Data directory - Bitcoin Wiki

Make your own stakebox. Ultimate beginners guide how to compile any wallet on AARCH64 (Raspbery pi and other SBC)

I contemplated to wrote this for a long time, so it's finally time.
As you know a lot of altcoins uses PoS (Proof-of-stake) way of "mining" coins. Which basically means, that you hold coins on your unlocked wallet and you are receiving stakes as a reward. This requires very little power and it can bring you a lot of rewards, at just 10W from the wall.
So first I am using latest Raspbian on RPI4B 4GB in this example.Setting up Raspbian is not part of this process since it's very well documented. I recommend to change user from pi to something else due to security concerns and you can also do other stuff just search "security Raspberry PI" and you find a lot of articles, but this is not the focus of this guide.
I know there are a lot of guides on the internet, but I am using like 5 sources, so it's compiled what other people wrote and some of my research.
I am using AnyDesk insted of SSH or VNC server, because it works it's ligthweit and it just works.
So after you see the gui of Raspbian, just launch terminal (CTRL + ALT + T) and do basic thing:
sudo apt-get update && sudo apt-get upgrade
Than press Y and let it run, after is finished, we need to prepare so dependency packages. Since most of the wallets using Berkeley DB 4.8 we need to obtain it.
So in terminal wrote:
cd cd Downloads wget http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz tar -xzvf db-4.8.30.NC.tar.gz cd db-4.8.30.NC/build_unix ../dist/configure --enable-cxx make sudo make install 
So wait unti it's finished and than you can delete files in Downloads folder in gui or use:
sudo rm -r [folder] 
So next thing we need to install some libraries.
sudo apt-get install git build-essential libtool autotools-dev autoconf pkg-config libssl-dev libcrypto++-dev libevent-dev libminiupnpc-dev libgmp-dev libboost-all-dev devscripts libdb++-dev libsodium-dev 
And pres y and let it run. After that another set of libraries:
sudo apt-get install libqt5gui5 libqt5core5a libqt5dbus5 qttools5-dev qttools5-dev-tools libprotobuf-dev protobuf-compiler libcrypto++- dev libminiupnpc-dev qt5-default 
And then again pres y and let it run. Some wallets need older version of libssl1.0-dev, so for for safe compiling we install that as well:
sudo apt-get install libssl1.0-dev 
Pres y and let it run. Warning don't use sudo-apt get autoremove, since it would wipe this package, since it's old.
Next thing we are going to obtain Bitcoin PPA filest, which can be done like this.
cd /etc/apt/sources.list.d/ sudo nano bitcoin.list 
Paste this in there:
deb-src http://ppa.launchpad.net/bitcoin/bitcoin/ubuntu artful main 
And CTRL+X and than y, then do this:
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv C70EF1F0305A1ADB9986DBD8D46F45428842CE5E sudo apt-get update 
So now we are ready for compiling. So we are going create folders. CD yourself where this folder should be situated, if you for example have plugged in some external drive. Then:
mkdir Crypto cd Crypto 
And then we have to choose wallet which you want to compile. I am choosing Streamies (STRMS) as an example, since it's pretty good coin for staking. So:
mkdir Streamies cd Streamies 
Then go to the github page and click on the green button on the left and click copy to clipboard, which gives you git link.
git clone https://github.com/Streamies/Streamies.git 
Watch the output folder which it creates, it's stated in the first two lines and copy then by highliting the text and CTRL+SHIFT+C copy it to your clipboard.
cd Streamies (this is that git created folder) ./autogen.sh ./configure CPPFLAGS="-I/uslocal/BerkeleyDB.4.8/include -O2" LDFLAGS="-L/uslocal/BerkeleyDB.4.8/lib" sudo make (this could take hours) sudo make install 
And you are done, files is going to be in folder /uslocal/bin (DO NOT delete git created folder, because you are going to need it for faster compiling, when wallet get's and update.)
cd /uslocal/bin 
Now you can list files by:
ls 
And then you can copy/move them where ever you want by using:
sudo mv * [destination full path] 
Let it run and go back to folder where you move those files.
sudo chmod +x streamies-qt (since we want to run wallet) 
In most cases compiled files are going to in format of "shared library" so we need to create script to run it. Open up a text editor from gui or through nano. And paste this to that file:
#!/bin/bash ./streamies-qt 
And save it as a sh file, for example run.sh. Then we need to make it runnable so:
sudo chmod +x run.sh 
Now to run it, it's just:
./run.sh 
And here we are glorious GUI wallet appears and you are done, you can paste blockchain, wallet.dat from other sources, so this migration is pretty easy and you, if you have it on for exaple flash disk.
So this is basic how to compile QT wallets on AARCH64. I am running 7 wallets, 2 of those are Masternodes and RPI 4B 4GB would handle way more, I am at best on half of my RAM.
Some wallets need more package, but it's not much of and issue, since compiling stops and you just copy paste nape which is missing put it in the google and add "apt-get" after the name of package and you are going to see, what is the name of the packages so it can be retreived from package assinstant aka apt-get. So basically:
sudo apt-get install [package name] 
Then press y and again wrote:
sudo make 
This process is going to continue where it was left off, so nothing is going to run from beginning.
Updating wallets is basically exactly same, just repeat steps from "git clone" and after that proceed as it was written above.
So I hope this helps some of you, to use this at home and not on some VPS, if you are anxious as me, to host my wallets on remote server.
submitted by M1chlCZ to CryptoCurrency [link] [comments]

TheMessage Edition 004

1 – Utopia Trivia – What may be considered the technological grandfather of Utopia?

Look for the answer to this trivia question in this week’s long-form article, entitled “A Deeper Look Inside The Rabbit Hole of Utopia – PART I”.

2 – A Deeper Look Inside The Rabbit Hole of Utopia – PART I

The memory of man is short and his attention span even more fleeting. If you wish to more fully appreciate the revolutionary potential of Utopia’s P2P Ecosystem, you must have an appreciation for how revolutionary and empowering the technologies that came before it really were. Before cryptocurrencies, before Bitcoin, before Bittorrent, before Napster and even before the modern internet we know today, there was Usenet. A name derived from “User’s Network”, Usenet was considered the first telecommunications system to utilize what can be described as peer-to-peer technology. To quote Columbia professor and co-author of “Netizens: On the History and Impact of Usenet and the Internet”, Michael Hauben wrote, “A new communications medium is currently in its infancy. Over the past two decades the global computer telecommunications network has been developing. One element of this network is called Usenet (also known as Netnews)… In its simplest form, Usenet represents democracy.” How can a technology represent democracy? What did Hauben mean by this?
Usenet was a system of communication established publically in 1980 at the University of North Carolina at Chapel Hill and Duke University that enabled individuals to post articles or messages on their own server that then get propogated to other servers connected to the network. The technical underpinnings of the Unix-to-Unix Copy Protocol this system uses are not as important as what it enabled. Users could now share ideas, make announcements and have open discussions with potentially anyone around the world. There were no gatekeepers, no power brokers, no one to obtain consent from before posting a question or challenging an established norm of society. At the heart of the democratic ideal is the power of the people to choose. Regardless of the corrupted manifestations of democracy we have around the world today, the ideal itself is about empowering people. One of the most fundamental powers of a people is the power to direct their own thoughts, form their own opinions and manifest their own ideas and then to be able to share those with others freely without fear, coercion or even permission.
The transformative and revolutionary promise of the internet itself is in its potential to enable such empowerment. If people could share their ideas, opinions and thoughts, no matter how subversive or unconventional those ideas may be to those in positions of power around the world, then the heart of the internet will have been preserved–the promise of the internet will have been fulfilled. But this promise is not assured, the transformative and empowering potential of the internet is not guaranteed.
PLEASE LOOK FOR PART II IN EDITION 005 OF THEMESSAGE

3 – Update on TheMegaphone’s Utopia Meme Contest

January 27th, 2020 saw the kickoff of Utopia’s first Meme Contest at TheMerchant’s personal ECHO feed, TheMegaphone (Utopia Channel ID: 3277D61A3CF7BAEE951C0C6607532FB8 ) Users from around the world were invited and encouraged to submit creative, inspiring and humourous meme images about the Utopia P2P Ecosystem. This contest sought not only to engage community members in a network-wide creative effort, but also to help generate unique content that may be shared beyond the ecosystem to help inspire others and peak their curiosity about the ecosystem and its potential. As of the publication date of this 4th edition of TheMessage, there have been 68 unique submissions from 10 separate accounts in 3 different languages on Utopia. The competition is expected to heat up as we get closer to final deadline and all Utopians are invited to visit TheMegaphone on February 9th at 14:00 UTC when the finest and funniest submissions will be showcased by TheMerchant as the top prizes are awarded according to the following prize schedule:
1st Place: 50 CRP
2nd Place: 35 CRP
3rd Place: 25 CRP
4th Place: 15 CRP
5th Place: 5 CRP
Best Russian Language Submission: 15 CRP
Best Chinese Language Submission: 15 CRP
Please review article #4 in the previous edition of TheMessage for contest details and guidelines.

4 – Flashback: When is the Big Update Coming? (Appreciating the Creator’s Dilemma)

In honour of the most recent delay in the release of the much anticipated major update, TheMessage archives are being dusted off and the following article from 2 weeks ago is being republished:
Have you ever crafted a stone sculpture with your own hands? Have you ever tried to delicately place the final strokes of paint on a personal masterpiece, or compose the final few pages of a grand novel or indeed your own memoirs? When the artist, writer, or yes, even the developer is in charge of saying a personal project is ready for the public, there is an intense struggle with the self that comes about. As much as the creator wants his creation to see the world and to be seen by it, there’s always more to be done. The work is never quite refined enough for the creator who loves his creation with an intense and personal conviction. As much as Utopia P2P is created for the entire world to benefit from, as evidenced by the remarkable number of languages it has been made available in, it is also still a very personal project for the enigmatic team behind it. Recall that before the Beta was ever announced in mid-2019, the 1984 Group had been toiling away in secret for almost 6 years on the project. So when a major update is delayed by a few days or weeks, those of us who are excited to taste the fruit of the team’s toil, with TheMerchant firmly among them, are reminded of that struggle and the motivations behind it.

5 – Personal Note from The Publisher

In future editions of TheMessage, TheMerchant intends to address the important question of open-source software as it relates to security and encryption software, as well as to take a critical look at the cryptocurrency industry as the milieu into which Utopia has been birthed after years of incubation. Questions that will be tackled include: “Is Utopia just another cryptocurrency project?” (Hint: even just the classification does a disservice to the underlying technology of the platform and its potential), and “How is ‘mining’ in Utopia fundamentally different than traditional cryptocurrency mining?”.
Here’s where to find “The Rabbit Hole” that is Utopia for those who may be reading on the surveillance landscape of the clearnet: https://u.is
TheMerchant Public Key: 0093DEFD354D78D4F035CF04A935DD211A9765B8779C68D30A9DA0B3EB06554F
TheMarket Channel ID: E95109799EC5047783C867F6AF6D4568
TheMessage Channel ID: BE91B84B9565C8429D214EBB10753E83
submitted by Hackology_co to Utopia1984 [link] [comments]

(Updated) [Staking] Reddcoin Core client GUI wallet on a Raspberry Pi Model 3B

Intro

This thread is an update to my first Reddcoin staking tutorial that was written 7 months ago.
 
The reason for the update
My Reddcoin Core software crashed and became unusable. My Raspberry Pi 3B would lag and freeze, I couldn't stake anymore.
 
Instead of just redoing everything the same way, I wanted to see if I could improve on 3 points:
 
The updates
 
If you would like to tip me
Writing a tutorial like this takes time and effort; tips are appreciated. My Reddcoin address: RqvdnNX5MTam855Y2Vudv7yVgtXdcYaQAW.
     

Overview

 

Steps

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

Video

https://www.youtube.com/watch?v=Snr5e8bzftI
This video shows how long it takes to start Reddcoin Core.   TL;DR:
     

Extra

Backup
Backup your wallet to prevent losing the RDDs in your wallet! There are two methods to backup, do both. Make new backups if you create a new receiving address!
 
 
   
Boot with only 1 USB drive plugged in:
Make sure only the USB drive (with the swap partition and data partition) is plugged in when you boot up your Raspberry Pi. This to make sure the swap partition (/dev/sda1) is recognized correctly.   If you boot up with multiple USB drives, Lubuntu might see the USB drive with the swap partition as the second drive (instead of the first drive), and ignore the 2 GB swap partition. If this happens, starting Reddcoin can render the Raspberry Pi unresponsive.
   
Connection issues If you have issues syncing the blockchain because you have 0 network connections, please follow the instructions in this thread.
   
Start Reddcoin Core easier
Run a shell script (.sh file), so you can start Reddcoin just by double clicking on an icon on your Desktop.
   
Minimization options
Adjust minimization options, so you can safely press on the X button (the close/exit button on the upper right corner).
   
RealVNC VNC Viewer (client) and VNC Connect (server): To remote connect to the Raspberry Pi, I use VNC Viewer ad VNC Connect from RealVNC.
 
   
Chromium as browser: The updates break Firefox, the browser crashes when you try to run it. Install another browser, Chromium, to solve this issue.
   
Updates / Upgrades
If Software Updater shows up and tells you that there is updated software available, do not install the updates using Software Updater. Use LXTerminal to update Lubuntu.  
     

Credits:

   
Credits in previous tutorial:
submitted by Yavuz_Selim to reddCoin [link] [comments]

The Nexus FAQ - part 1

Full formatted version: https://docs.google.com/document/d/16KKjVjQH0ypLe00aoTJ_hZyce7RAtjC5XHom104yn6M/
 

Nexus 101:

  1. What is Nexus?
  2. What benefits does Nexus bring to the blockchain space?
  3. How does Nexus secure the network and reach consensus?
  4. What is quantum resistance and how does Nexus implement this?
  5. What is Nexus’ Unified Time protocol?
  6. Why does Nexus need its own satellite network?
 

The Nexus Currency:

  1. How can I get Nexus?
  2. How much does a transaction cost?
  3. How fast does Nexus transfer?
  4. Did Nexus hold an ICO? How is Nexus funded?
  5. Is there a cap on the number of Nexus in existence?
  6. What is the difference between the Oracle wallet and the LLD wallet?
  7. How do I change from Oracle to the LLD wallet?
  8. How do I install the Nexus Wallet?
 

Types of Mining or Minting:

  1. Can I mine Nexus?
  2. How do I mine Nexus?
  3. How do I stake Nexus?
  4. I am staking with my Nexus balance. What are trust weight, block weight and stake weight?
 

Nexus 101:

1. What is Nexus (NXS)?
Nexus is a digital currency, distributed framework, and peer-to-peer network. Nexus further improves upon the blockchain protocol by focusing on the following core technological principles:
Nexus will combine our in-development quantum-resistant 3D blockchain software with cutting edge communication satellites to deliver a free, distributed, financial and data solution. Through our planned satellite and ground-based mesh networks, Nexus will provide uncensored internet access whilst bringing the benefits of distributed database systems to the world.
For a short video introduction to Nexus Earth, please visit this link
 
2. What benefits does Nexus bring to the blockchain space?
As Nexus has been developed, an incredible amount of time has been put into identifying and solving several key limitations:
Nexus is also developing a framework called the Lower Level Library. This LLL will incorporate the following improvements:
For information about more additions to the Lower Level Library, please visit here
 
3. How does Nexus secure the network and reach consensus?
Nexus is unique amongst blockchain technology in that Nexus uses 3 channels to secure the network against attack. Whereas Bitcoin uses only Proof-of-Work to secure the network, Nexus combines a prime number channel, a hashing channel and a Proof-of-Stake channel. Where Bitcoin has a difficulty adjustment interval measured in weeks, Nexus can respond to increased hashrate in the space of 1 block and each channel scales independently of the other two channels. This stabilizes the block times at ~50 seconds and ensures no single channel can monopolize block production. This means that a 51% attack is much more difficult to launch because an attacker would need to control all 3 channels.
Every 60 minutes, the Nexus protocol automatically creates a checkpoint. This prevents blocks from being created or modified dated prior to this checkpoint, thus protecting the chain from malicious attempts to introduce an alternate blockchain.
 
4. What is quantum resistance and how does Nexus implement it?
To understand what quantum resistance is and why it is important, you need to understand how quantum computing works and why it’s a threat to blockchain technology. Classical computing uses an array of transistors. These transistors form the heart of your computer (the CPU). Each transistor is capable of being either on or off, and these states are used to represent the numerical values 1 and 0.
Binary digits’ (bits) number of states depends on the number of transistors available, according to the formula 2n, where n is the number of transistors. Classical computers can only be in one of these states at any one time, so the speed of your computer is limited to how fast it can change states.
Quantum computers utilize quantum bits, “qubits,” which are represented by the quantum state of electrons or photons. These particles are placed into a state called superposition, which allows the qubit to assume a value of 1 or 0 simultaneously.
Superposition permits a quantum computer to process a higher number of data possibilities than a classical computer. Qubits can also become entangled. Entanglement makes a qubit dependant on the state of another, enabling quantum computing to calculate complex problems, extremely quickly.
One such problem is the Discrete Logarithm Problem which elliptic curve cryptography relies on for security. Quantum computers can use Shor’s algorithm to reverse a key in polynomial time (which is really really really fast). This means that public keys become vulnerable to quantum attack, since quantum computers are capable of being billions of times faster at certain calculations. One way to increase quantum resistance is to require more qubits (and more time) by using larger private keys:
Bitcoin Private Key (256 bit) 5Kb8kLf9zgWQnogidDA76MzPL6TsZZY36hWXMssSzNydYXYB9KF
Nexus Private Key (571 bit) 6Wuiv513R18o5cRpwNSCfT7xs9tniHHN5Lb3AMs58vkVxsQdL4atHTF Vt5TNT9himnCMmnbjbCPxgxhSTDE5iAzCZ3LhJFm7L9rCFroYoqz
Bitcoin addresses are created by hashing the public key, so it is not possible to decrypt the public key from the address; however, once you send funds from that address, the public key is published on the blockchain rendering that address vulnerable to attack. This means that your money has higher chances of being stolen.
Nexus eliminates these vulnerabilities through an innovation called signature chains. Signature chains will enable access to an account using a username, password and PIN. When you create a transaction on the network, you claim ownership of your signature chain by revealing the public key of the NextHash (the hash of your public key) and producing a signature from the one time use private key. Your wallet then creates a new private/public keypair, generates a new NextHash, including the corresponding contract. This contract can be a receive address, a debit, a vote, or any other type of rule that is written in the contract code.
This keeps the public key obscured until the next transaction, and by divorcing the address from the public key, it is unnecessary to change addresses in order to change public keys. Changing your password or PIN code becomes a case of proving ownership of your signature chain and broadcasting a new transaction with a new NextHash for your new password and/or PIN. This provides the ability to login to your account via the signature chain, which becomes your personal chain within the 3D chain, enabling the network to prove and disprove trust, and improving ease of use without sacrificing security.
The next challenge with quantum computers is that Grover’s algorithm reduces the security of one-way hash function by a factor of two. Because of this, Nexus incorporates two new hash functions, Skein and Keccak, which were designed in 2008 as part of a contest to create a new SHA3 standard. Keccak narrowly defeated Skein to win the contest, so to maximize their potential Nexus combines these algorithms. Skein and Keccak utilize permutation to rotate and mix the information in the hash.
To maintain a respective 256/512 bit quantum resistance, Nexus uses up to 1024 bits in its proof-of-work, and 512 bits for transactions.
 
5. What is the Unified Time protocol?
All blockchains use time-stamping mechanisms, so it is important that all nodes operate using the same clock. Bitcoin allows for up to 2 hours’ discrepancy between nodes, which provides a window of opportunity for the blockchain to be manipulated by time-related attack vectors. Nexus eliminates this vulnerability by implementing a time synchronization protocol termed Unified Time. Unified Time also enhances transaction processing and will form an integral part of the 3D chain scaling solution.
The Unified Time protocol facilitates a peer-to-peer timing system that keeps all clocks on the network synchronized to within a second. This is seeded by selected nodes with timestamps derived from the UNIX standard; that is, the number of seconds since January 1st, 1970 00:00 UTC. Every minute, the seed nodes report their current time, and a moving average is used to calculate the base time. Any node which sends back a timestamp outside a given tolerance is rejected.
It is important to note that the Nexus network is fully synchronized even if an individual wallet displays something different from the local time.
 
6. Why does Nexus need its own satellite network?
One of the key limitations of a purely electronic monetary system is that it requires a connection to the rest of the network to verify transactions. Existing network infrastructure only services a fraction of the world’s population.
Nexus, in conjunction with Vector Space Systems, is designing communication satellites, or cubesats, to be launched into Low Earth Orbit in 2019. Primarily, the cubesat mesh network will exist to give Nexus worldwide coverage, but Nexus will also utilize its orbital and ground mesh networks to provide free and uncensored internet access to the world.
 

The Nexus Currency (NXS):

1. How can I get Nexus?
There are two ways you can obtain Nexus. You can either buy Nexus from an exchange, or you can run a miner and be rewarded for finding a block. If you wish to mine Nexus, please follow our guide found below.
Currently, Nexus is available on the following exchanges:
Nexus is actively reaching out to other exchanges to continue to be listed on cutting edge new financial technologies..
 
2. How much does a transaction cost?
Under Nexus, the fee structure for making a transaction depends on the size of your transaction. A default fee of 0.01 NXS will cover most transactions, and users have the option to pay higher fees to ensure their transactions are processed quickly.
When the 3D chain is complete and the initial 10-year distribution period finishes, Nexus will absorb these fees through inflation, enabling free transactions.
 
3. How fast does Nexus transfer?
Nexus reaches consensus approximately every ~ 50 seconds. This is an average time, and will in some circumstances be faster or slower. NXS currency which you receive is available for use after just 6 confirmations. A confirmation is proof from a node that the transaction has been included in a block. The number of confirmations in this transaction is the number that states how many blocks it has been since the transaction is included. The more confirmations a transaction has, the more secure its placement in the blockchain is.
 
4. Did Nexus hold an ICO? How is Nexus funded?
The Nexus Embassy, a 501(C)(3) not-for-profit corporation, develops and maintains the Nexus blockchain software. When Nexus began under the name Coinshield, the early blocks were mined using the Developer and Exchange (Ambassador) addresses, which provides funding for the Nexus Embassy.
The Developer Fund fuels ongoing development and is sourced by a 1.5% commission per block mined, which will slowly increase to 2.5% after 10 years. This brings all the benefits of development funding without the associated risks.
The Ambassador (renamed from Exchange) keys are funded by a 20% commission per block reward. These keys are mainly used to pay for marketing, and producing and launching the Nexus satellites.
When Nexus introduces developer and ambassador contracts, they will be approved, denied, or removed by six voting groups namely: currency, developer, ambassador, prime, hash, and trust.
Please Note: The Nexus Embassy reserves the sole right to trade, sell and or use these funds as required; however, Nexus will endeavor to minimize the impact that the use of these funds has upon the NXS market value.
 
5. Is there a cap on the number of NXS in existence?
After an initial 10-year distribution period ending on September 23rd, 2024, there will be a total of 78 million NXS. Over this period, the reward gradient for mining Nexus follows a decaying logarithmic curve instead of the reward halving inherent in Bitcoin. This avoids creating a situation where older mining equipment is suddenly unprofitable, encouraging miners to continue upgrading their equipment over time and at the same time reducing major market shocks on block halving events.
When the distribution period ends, the currency supply will inflate annually by a maximum of 3% via staking and by 1% via the prime and hashing channels. This inflation is completely unlike traditional inflation, which degrades the value of existing coins. Instead, the cost of providing security to the blockchain is paid by inflation, eliminating transaction fees.
Colin Cantrell - Nexus Inflation Explained
 
6. What is the difference between the LLD wallet and the Oracle wallet?
Due to the scales of efficiency needed by blockchain, Nexus has developed a custom-built database called the Lower Level Database. Since the development of the LLD wallet 0.2.3.1, which is a precursor to the Tritium updates, you should begin using the LLD wallet to take advantage of the faster load times and improved efficiency.
The Oracle wallet is a legacy wallet which is no longer maintained or updated. It utilized the Berkeley DB, which is not designed to meet the needs of a blockchain. Eventually, users will need to migrate to the LLD wallet. Fortunately, the wallet.dat is interchangeable between wallets, so there is no risk of losing access to your NXS.
 
7. How do I change from Oracle to the LLD wallet?
Step 1 - Backup your wallet.dat file. You can do this from within the Oracle wallet Menu, Backup Wallet.
Step 2 - Uninstall the Oracle wallet. Close the wallet and navigate to the wallet data directory. On Windows, this is the Nexus folder located at %APPDATA%\Nexus. On macOS, this is the Nexus folder located at ~/Library/Application Support/Nexus. Move all of the contents to a temporary folder as a backup.
Step 3 - Copy your backup of wallet.dat into the Nexus folder located as per Step 2.
Step 4 - Install the Nexus LLD wallet. Please follow the steps as outlined in the next section. Once your wallet is fully synced, your new wallet will have access to all your addresses.
 
8. How do I install the Nexus Wallet?
You can install your Nexus wallet by following these steps:
Step 1 - Download your wallet from www.nexusearth.com. Click the Downloads menu at the top and select the appropriate wallet for your operating system.
Step 2 - Unzip the wallet program to a folder. Before running the wallet program, please consider space limitations and load times. On the Windows OS, the wallet saves all data to the %APPDATA%\Nexus folder, including the blockchain, which is currently ~3GB.
On macOS, data is saved to the ~/Library/Application Support/Nexus folder. You can create a symbolic link, which will allow you to install this information in another location.
Using Windows, follow these steps:
On macOS, follow these steps:
Step 3 (optional) - Before running the wallet, we recommend downloading the blockchain database manually. Nexus Earth maintains a copy of the blockchain data which can save hours from the wallet synchronization process. Please go to www.nexusearth.com and click the Downloads menu.
Step 4 (optional) - Extract the database file. This is commonly found in the .zip or .rar format, so you may need a program like 7zip to extract the contents. Please extract it to the relevant directory, as outlined in step 2.
Step 5 - You can now start your wallet. After it loads, it should be able to complete synchronization in a short time. This may still take a couple of hours. Once it has completed synchronizing, a green check mark icon will appear in the lower right corner of the wallet.
Step 6 - Encrypt your wallet. This can be done within the wallet, under the Settings menu. Encrypting your wallet will lock it, requiring a password in order to send transactions.
Step 7 - Backup your wallet.dat file. This can be done from the File menu inside the wallet. This file contains the keys to the addresses in your wallet. You may wish to keep a secure copy of your password somewhere, too, in case you forget it or someone else (your spouse, for example) ever needs it.
You should back up your wallet.dat file again any time you create – or a Genesis transaction creates (see “staking” below) – a new address.
 

Types of Mining or Minting:

1.Can I mine Nexus?
Yes, there are 2 channels that you can use to mine Nexus, and 1 channel of minting:
Prime Mining Channel
This mining channel looks for a special prime cluster of a set length. This type of calculation is resistant to ASIC mining, allowing for greater decentralization. This is most often performed using the CPU.
Hashing Channel
This channel utilizes the more traditional method of hashing. This process adds a random nonce, hashes the data, and compares the resultant hash against a predetermined format set by the difficulty. This is most often performed using a GPU.
Proof of Stake (nPoS)
Staking is a form of mining NXS. With this process, you can receive NXS rewards from the network for continuously operating your node (wallet). It is recommended that you only stake with a minimum balance of 1000 NXS. It’s not impossible to stake with less, but it becomes harder to maintain trust. Losing trust resets the interest rate back to 0.5% per annum.
 
2. How do I mine Nexus?
As outlined above, there are two types of mining and 1 proof of stake. Each type of mining uses a different component of your computer to find blocks, the CPU or the GPU. Nexus supports CPU and GPU mining on Windows only. There are also third-party macOS builds available.
Please follow the instructions below for the relevant type of miner.
 
Prime Mining:
Almost every CPU is capable of mining blocks on this channel. The most effective method of mining is to join a mining pool and receive a share of the rewards based on the contribution you make. To create your own mining facility, you need the CPU mining software, and a NXS address. This address cannot be on an exchange. You create an address when you install your Nexus wallet. You can find the related steps under How Do I Install the Nexus Wallet?
Please download the relevant miner from http://nexusearth.com/mining.html. Please note that there are two different miner builds available: the prime solo miner and the prime pool miner. This guide will walk you through installing the pool miner only.
Step 1 - Extract the archive file to a folder.
Step 2 - Open the miner.conf file. You can use the default host and port, but these may be changed to a pool of your choice. You will need to change the value of nxs_address to the address found in your wallet. Sieve_threads is the number of CPU threads you want to use to find primes. Ptest_threads is the number of CPU threads you want to test the primes found by the sieve. As a general rule, the number of threads used for the sieve should be 75% of the threads used for testing.
It is also recommended to add the following line to the options found in the .conf file:
"experimental" : "true"
This option enables the miner to use an improved sieve algorithm which will enable your miner to find primes at a faster rate.
Step 3 - Run the nexus_cpuminer.exe file. For a description of the information shown in this application, please read this guide.
 
Hashing:
The GPU is a dedicated processing unit housed on-board your graphics card. The GPU is able to perform certain tasks extremely well, unlike your CPU, which is designed for parallel processing. Nexus supports both AMD and Nvidia GPU mining, and works best on the newer models. Officially, Nexus does not support GPU pool mining, but there are 3rd party miners with this capability.
The latest software for the Nvidia miner can be found here. The latest software for the AMD miner can be found here. The AMD miner is a third party miner. Information and advice about using the AMD miner can be found on our Slack channel. This guide will walk you through the Nvidia miner.
Step 1 - Close your wallet. Navigate to %appdata%\Nexus (~/Library/Application Support/Nexus on macOS) and open the nexus.conf file. Depending on your wallet, you may or may not have this file. If not, please create a new txt file and save it as nexus.conf
You will need to add the following lines before restarting your wallet:
Step 2 - Extract the files into a new folder.
Step 3 - Run the nexus.bat file. This will run the miner and deposit any rewards for mining a block into the account on your wallet.
For more information on either Prime Mining or Hashing, please join our Slack and visit the #mining channel. Additional information can be found here.
 
3. How do I stake Nexus?
Once you have your wallet installed, fully synchronized and encrypted, you can begin staking by:
After you begin staking, you will receive a Genesis transaction as your first staking reward. This establishes a Trust key in your wallet and stakes your wallet balance on that key. From that point, you will periodically receive additional Trust transactions as further staking rewards for as long as your Trust key remains active.
IMPORTANT - After you receive a Genesis transaction, backup your wallet.dat file immediately. You can select the Backup Wallet option from the File menu, or manually copy the file directly. If you do not do this, then your Nexus balance will be staked on the Trust key that you do not have backed up, and you risk loss if you were to suffer a hard drive failure or other similar problem. In the future, signature chains will make this precaution unnecessary.
 
4. I am staking with my Nexus balance. What are interest rate, trust weight, block weight, and stake weight?
These items affect the size and frequency of staking rewards after you receive your initial Genesis transaction. When staking is active, the wallet displays a clock icon in the bottom right corner. If you hover your mouse pointer over the icon, a tooltip-style display will open up, showing their current values.
Please remember to backup your wallet.dat file (see question 3 above) after you receive a Genesis transaction.
Interest Rate - The minting rate at which you will receive staking rewards, displayed as an annual percentage of your NXS balance. It starts at 0.5%, increasing to 3% after 12 months. The rate increase is not linear but slows over time. It takes several weeks to reach 1% and around 3 months to reach 2%.
With this rate, you can calculate the average amount of NXS you can expect to receive each day for staking.
Trust Weight - An indication of how much the network trusts your node. It starts at 5% and increases much more quickly than the minting (interest) rate, reaching 100% after one month. Your level of trust increases your stake weight (below), thus increasing your chances of receiving staking transactions. It becomes easier to maintain trust as this value increases.
Block Weight - Upon receipt of a Genesis transaction, this value will begin increasing slowly, reaching 100% after 24 hours. Every time you receive a staking transaction, the block weight resets. If your block weight reaches 100%, then your Trust key expires and everything resets (0.5% interest rate, 5% trust weight, waiting for a new Genesis transaction).
This 24-hour requirement will be replaced by a gradual decay in the Tritium release. As long as you receive a transaction before it decays completely, you will hold onto your key. This change addresses the potential of losing your trust key after months of staking simply because of one unlucky day receiving trust transactions.
Stake Weight - The higher your stake weight, the greater your chance of receiving a transaction. The exact value is a derived by a formula using your trust weight and block weight, which roughly equals the average of the two. Thus, each time you receive a transaction, your stake weight will reset to approximately half of your current level of trust.
submitted by scottsimon36 to nexusearth [link] [comments]

Historical Analogy between Brexit & the DAO and Public Blockchain on Consensus, Fork, Decentralization and Security

Brexit and the DAO Hack
What is ‘Brexit’? The term is short for “British exit” — shorthand for the UK’s exit from the EU following the referendum result on June 23 2016, this unanimous referendum contributed a profound impact on the political and economic landscape worldwide. Obviously, the referendum is a way of reaching a consensus. Six hours right after the release of Brexit, “What is the EU?” came to the top search on Google. It indicates that the unanimous referendum has done under the situation that even many people did not know what the EU was. The next day, more than one million Britons will jointly hope for a second referendum.
Code was supposed to eliminate the need to trust humans. But humans, it turns out, are tough to take out of the equation
The DAO launched on 30th April, 2016, for whatever reason, the DAO was popular, raising over $100m by 15th May, with a 28-day. By the end of the funding period, The DAO was the largest crowdfunding in history, having risen over $150m from more than 11,000 enthusiastic members. Unfortunately, by Saturday, 18th June, the attacker managed to drain more than 3.6m ether into a “child DAO” that has the same structure as The DAO. The price of ether dropped from over $20 to under $13.
Meanwhile, Vitalik Buterin of the Ethereum Foundation issued a critical update, saying that the DAO was under attack and that he had worked out a solution. in order to save The Dao investors’ losses, the final decision was make to the hard fork.
In fact, prophase middle and late stage during the crowdfunding of The DAO project, many people indicated their design flaws and called for a temporary suspension of project crowdfunding. However, due to various reasons, those warnings did not cause enough attention to The DAO project team, which triggered DAO hack. Furthermore, this is an avoidable attact, but also reflects the greed of human nature.
The Brexit in which human society has reached consensus and the DAO hack in the blockchain seem to be unrelated incidents. But it is the most intense discussion of “consensus and fork, centering and decentralization” in the blockchain field. Hopefule, this article indicates the analogy between the Brexit & the DAO and the public blockchain.
The value of consensus
The consensus makes human beings valuable, since people do not live isolated. Furthermore, strong social attributes and networking which requires exchange and communication among people on the purpose of reaching consensus. How could we reach consensus? The first level is the linguistic consensus. The second level is semantic consensus. The third level is the implementation of consensus. In a consistent language environment, common understanding, people really implement the expected conclusions could be reached. However, in practice, deviations often occur in the implementation process.
The consensus is costly, take Brexit as an example again; the referendum off the European Union is time-consuming and laborious. First of all, we must mobilize all people have a reasonable understanding; Secondly, organize people to vote; thirdly, we have collect, sort, classify, and calculate the voting information; and finally, generate the result. The seemingly simple referendum, or the process of obtaining consensus, maybe it cost more than what we think.
Blockchain consensus VS human being consensus
The blockchain is established under consensus, a solid and unchangeable true record of consensus formation is formed. Here the longest chain represents the truth, and all people will accept it. And other branches are forked. There will be many new forks in the blockchain with the chain formation process. Fork is competitive with each other contribute that only the longest one can preserve and be recognized by all. This is the common rule of blockchain consensus.
On the other hand, the opposite of consensus is “differentiation.” But what causes the differences? First of all, in the process of reaching a consensus, there is no real consensus on connotation and extension. Secondly, even after a consensus is formed, people do not actually implement the conclusions based on the consensus mechanism. These disagreements could not generate the consensus. Once a new block is generated, it is synchronized to all or most of the nodes in real time. That is, once a consensus has been formed, it needs to be ensured that it is actually implemented. Only in this way can we ensure that all blockchain networks will always have a consensus.
With time being, the DAO hack attracts more people’s attention increasingly, especially in the term of soft forking and hard fork. “Hard fork” means that all transactions will be tracked back to a point in time before they are stolen. And “soft fork” is equivalent to closing all transactions from the attacker’s address.In simple terms, through active fork techniques, good people and attackers disagree, and the attacker’s malicious transaction is not recognized by most (good) people.
Byzantine General: Centered and Decentralized
From a comprehensive and objective expect the Dao hack, The Dao is the most important experiment of Bitcoin. In a world where everyone is accustomed to centralized management, and how to achieve a decentralized management organization? This problem could not get through is the issue of “General Byzantine”, which is a classic problem that assumes that good people in Byzantine are in the majority. The generals of the Byzantine Empire’s army must all unanimously decide whether to attack a particular enemy. The problem is that these generals are geographically separated and there are traitors in the generals. Traitors can act arbitrarily to achieve the following goals:
(1) Defrauding certain generals to take offensive actions;
(2) To facilitate a decision that not all generals agree on, such as when the generals do not want to attack to facilitate offensive actions;
(3) Enchant some generals to make it impossible to make a decision. If the traitor achieves any of these goals, the result of the attack is doomed to failure, and only a fully-consensual consensus can win.
The “Byzantine General” issue is a good example based on the settlement of consensus mechanisms, involving centralization and decentralization. If it is a centralized solution, it is none other than people who collectively elect some people as the general, and then the generals come to discuss and vote until the supreme commander makes a final decision on all factors. The decentralized solution is regarding all people are generals, and everyone is directly involved in the final decision.
Furthermore, distributed system and decentralization are often confusing, and even one-sided people think that distributed is equivalent to decentralization. In fact, distribution could be centralized, and centralized may also be decentralized. For example, all voters are required to go to the same place for the referendum. It is interesting that to select representatives to make decisions or all personnel to make decisions directly. Guess please, among those two methods which one ultimately leads to better decisions? In different perspectives, the answer is also questionable.
Centralized and Decentralized result of Brexit Results
If the above problem is mapped to the field of data mining and machine learning. “All staff” corresponds to “full sample data.” The “representative” corresponds to the filtered “sample data.” The “decision made” corresponds to the “generated model.” Unexpectedly, we will find that the data model generated based on full sample data may not be of the highest quality. Instead, those models are based on screening samples are more effective. The reason is very simple that when we are using full samples, we can’t avoid introducing additional noise. Accurately speaking, the full sample is sometimes not conducive to algorithms that generate models that match the distribution of real data. When noise is removed, the new model is more accurate. This is the statistical principle why people often need to do data cleaning operations before data modeling.
This difference is particularly evident in the Brexit. We can figure out that the big differences between the northern and southern parts of the UK. Northern Scotland and much of Ireland people strongly support the retention of Europe (yellow part in the picture), while most people in the southern region opt for Brexit (blue part in the picture). From all the British (full sample), the majority of people who chose to leave the European Union occupied the majority. In this process, it is obvious that the huge contradiction between local features and global statistics. If taking a centralized or decentralized approach, the conclusion may be completely different.
https://preview.redd.it/vs339s5f5dz01.png?width=459&format=png&auto=webp&s=44fa9302be93b54ae2d8267b10c1845191dd1fef
In the blockchain domain, the main advantages of decentralization are reflected in the support of “point-to-point” direct transactions and the establishment of strong trust relationships with many weak trust nodes. In the centralized solution, the center often becomes the “bottleneck” of the entire system, and becomes the weakest link in which the system is most vulnerable to be attacked. In order for the center to have sufficient processing power, throughput, security and reliability, it si often required to purchase the very expensive equipments.
Soft fork and hard fork is not inconsistent with decentralization
What is the correlation between disagreement or fork and decentralization? There is no necessary connection between those two indeed. From the DAO hack incident point of view, due to the fork proposal was Vitalik represented by the Ethereum Foundation appealed. Therefore, people might regard that “Is this not a new center?” Furthermore, there is a fundamental difference between such appeals and advocacy and true centralization. Whether people really make soft fork or hard fork depends on single people who are involved in building and operating the Ethereum network. As Vitalik stated in one of his public response that I will not stop or oppose the other’s their views or opinions in public or even lobby the miners to resist this soft fork.
Meanwhile, in the course of The DAO hack, there are a lot of rumors about whether “Ethernet blockchain is a decentralized network as it advertises” and “Ethereum blockchain will be stopped”. Because of the emergence of bitcoin mining machines and mining pools, there was a center for the calculation of bitcoin designs that were originally decentralized. These computing centers have a great impact on the Bitcoin network. Therefore, Ethereum could be carried out a new design, considering more decentralized approach, and reduce the possibility of specializing in the design and manufacture of the Ethereum mining machine in the future. The principle it adopts is very simple, which is, block calculation based on Ethereum blockchain must be based on relatively large memory. Existing miners that can perform Hash calculation directly on the bitcoin system. As a result, the cost of manufacturing Ethereum mining machines has become very expensive and centralised mining methods have been avoided as much as possible.
Of course, we must objectively treat the contrast between Bitcoin and Ethereum’s ecosystem, and Bitcoin still Take the absolute advantage. From the perspective of hash computing power, the average computational power of Bitcoin’s current network is about 1,500,000 TH/S, and Ethereum’s computational power is 4 TH/S, a 4 million-fold difference. There is also a problem of over-concentration of mining pools. Some domestic experts are optimistic about this matter. Another fact is that the vast majority of bitcoin mining pools are built in China. This is helpful for China to increase its influence in Bitcoin’s virtual world. From the point of my view, absolute centralization and absolute decentralization are undesirable; in particular, the fiery blockchain is now more based on Bitcoin’s existing blockchain design. The price increasing of Bitcoin’s is in kind of indicator that people are optimizing on blockchain technology in the future.
The DAO’s Security Alerts in the Middle and Application Layers
The most critical question that people are concerned from the DAO hack is the security issue. All security is needed to be hierarchical. As figure below indicated, in the Ethereum eco-system, the bottom level is the Taifang virtual machine — — EVM. The middle tier is a programming language or script needed to support application programming, such as Solidity, Python, Go, etc. The top level is various applications written in languages ​​such as Solidity. For example, the DAO is one of an Ethereum application. This architecture is analogous to the IT ecosystem that we are now familiar with. At the bottom level is the various operating systems people are familiar with, such as Windows, Linux, UNIX, For example, if it is a mobile ecosystem, it corresponds to Apple’s iOS and Android’s Android system. The middle tier is a variety of programming languages ​​such as Java, C++, Python, etc. The top level is a variety of applications, such as Taobao, WeChat etc.
After the hierarchy is divided, it is easy to trace back the problem. There is no necessary connection between The DAO Hack and Ethereum EVM. Just as there was a security issue when using Taobao or WeChat, and it’s crashed suddenly which could not due to the problem of Windows or IOS. However, the loopholes in the underlying system might contribute security problems in the upper application. Fortunately, in the DAO hack, security vulnerabilities did not appear in the underlying EVM, but it were origin form on recursive call vulnerability in the solidity programming. Just like there was a bug in the Java language, which led to the crash of Taobao or WeChat, this security issue is irrelevant to Windows or IOS.
In conclusion, one of the biggest problems of the public block chain is the contradiction between security and efficiency, that is to say that how to figure out the optimum balance between decentralization and efficiency? From the perspective of the public blockchain, it avoids the limitations of the intermediary institutions and establishes a peer-to-peer trust paradigm. As well as from the perspective of the alliance blockchain, its consensus approach is more based on the Byzantine fault-tolerance mechanism. Since it is multi-centered and balanced between each other, by establishing a distributed ledger, the possibility of any participants to change any records is minimal
As the international public blockchain originated from China, PCHAIN has always been committed technology driven, it’s no doubt that the native multi-chain system support larger transactions than intelligent contract platforms, and PCHAIN has been closely followed by community developers worldwide.
PCHAIN is making large-scale blockchain applications happen and enabling people to access the blockchain anytime, anywhere, as simple as accessing the Internet nowadays.
submitted by pchain_org to u/pchain_org [link] [comments]

Looking for a new place to live w/ fruit

I'm taking a shot in the dark, but figured I'd try my hand at hitting up /bitcoin to find somewhere neat to move. I've been into cryptocurrencies for a while now, and I've rented places in the past with bitcoin. I'd love to find another place to make a similar deal. I'd adore finding a place with apples, or some type of fruit to share so that I can brew up some delicious moonshine (I would also be willing to trade for my craft). I know this is a crazy ass post, but I'm a unique individual & know what I'm looking for & would be tickled to find it. I'm currently living in California, and willing to move just about anywhere. I would adore to get up into Montreal Canada (cause I love it there), or back east anywhere for that matter.
Likewise my craft ain't the most legal of things, but I'm safe, all I need is a sink / hose & some electricity, I'm 25, clean, organized, adventurous, hard working & am currently digging hard on bitcoin & ethereum. I've worked as a unix/linux sysadmin for a while, owned a bitcoin mining hardware business, and have been traveling for a bit. I'd love to settle for a little while & perfect my craft for distilling .
Hope to get some wonderful responses.
EDIT: I'm preferably looking for a place that I can rent with bitcoin, or be able to trade for my craft / worktrade. It's easier for me if I can drive (North or South America,) but I'm willing to relocate to anywhere interesting.
EDIT 2: Prolly wouldn't bring along my still if moving out of country. It's be too much of a pain. Yet I'm still interested in the prospect of renting a place with bitcoin, no matter where the location.
submitted by fsk1411 to Bitcoin [link] [comments]

Lore v2 QT on Raspberry Pi

Hello,
 
To follow up to mindphuk's excellent piece on building the headless client on Raspberry Pi (https://www.reddit.com/blackcoin/comments/6gkjrw/wip_blackpi_a_stake_device_based_on_raspberry/), I thought if anyone was interested I'd show you how to get the full QT version running on the Pi on the Jessie with Pixel desktop. This works and has been soak tested for several days now on a standard Raspberry Pi 3. I have since added some coins and it stakes a handful of times a day.
 
Running staking Lore clients paves the way for some of the future use cases of BLK utilising the Bitcoin 0.12 (and newer) core tech, including colored coins. So I'm going to leave this one going indefinitely to kickstart the number of Lore clients staking. It's certainly not mandatory but it will be good in the longer term to have a nice distribution of Lore staking clients.
 
The cross-compile which lets you create binaries for multiple platforms didn't work for the QT version on the Pi, so there is more to do than just running the binary unfortunately, as below. There are folks working on some much cleaner solutions than this for the Pi, with a custom front end, and where you won't have to do any mucking about. That is coming soon. In the meantime, if you enjoy a fiddle with such things, here's how to get this QT client working on your Pi.
 
These instructions assume you are starting from scratch with a completely blank OS.
 
Download Jessie with Pixel from: http://downloads.raspberrypi.org/raspbian/images/raspbian-2017-07-05/2017-07-05-raspbian-jessie.zip
 
Note they have since (August 2017) released a version called 'Stretch' which does not work with this guide. I'll see if I can come up with something new for that at some point and link to it here when I have. In the meantime the guide should work with the Jessie image above.
 
Unzip the file and extract the .img file to burn it onto Fresh SD card to boot from (to be safe, use 16GB or larger), using a tool like win32diskimager or Etcher.
 
Assuming you have keyboard/mouse and monitor plugged into your pi, boot it up and the Jessie Desktop will show.
 
Before we do anything else, you should increase the default swap size on the pi, as compiling certain libraries can exhaust the RAM and get stuck otherwise. To do this, launch a Terminal window and type:
 
sudo nano /etc/dphys-swapfile 
 
and Change the CONF_SWAPSIZE from 100 to:
 
CONF_SWAPSIZE=1024 
 
Exit nano with control + x to write out the file.
 
Then, run the following to restart the swapfile manager:
 
sudo /etc/init.d/dphys-swapfile stop sudo /etc/init.d/dphys-swapfile start 
 
Now, launch the browser and download the Lore 2.12 binaries for ARM here: https://mega.nz/#!k2InxZhb!iaLhUPreA7LZqZ-Az-0StRBUshSJ82XjldPsvhGBBH4 (Version with fee fix from 6 September 2017)
 
(If you prefer to compile it yourself instead, it is possible by following the instructions in the original article by Mindphuk just taking into account this is the newer version of the Lore client than when that was written (https://github.com/janko33bd/bitcoin/releases) and the versions of Boost and the Berkeley DB need to be the same as below.)
 
Double click the zip and extract the Lore binary files. Yes, at the moment they are all called 'bitcoin', not 'blackcoin' or 'Lore' - this is because the code derives from a recent bitcoin core implementation so this has not yet been updated. You can place these wherever you like.
 
In the Terminal window, change directory to where you put the binaries, e.g.:
 
cd Downloads/lore-raspberrypi-armv7-jessie-pixel chmod +x * 
 
That marks the binaries as executable.
 
Now, we need the Boost libraries installed for any of the Lore binaries to work. The project was done with Boost 1.62.0. Unfortunately the Jessie repository only goes up to 1.55, so we need to download and build 1.62 manually on the device.
wget https://sourceforge.net/projects/boost/files/boost/1.62.0/boost_1_62_0.tar.gz/download tar -xvzf download cd boost_1_62_0 sudo ./bootstrap.sh sudo ./b2 install 
 
(This will take almost 2 hours. Have a nice cup of tea and a sit down.)
 
When I came to run the binaries, I found they couldn't find Boost. Running this command fixes that:
sudo ldconfig 
 
Now we are going to install the packages which aren't already included in the default OS installation which the binaries need in order to run:
sudo apt-get install qrencode libprotobuf-dev libevent-pthreads-2.0-5 
 
Now we need to install the Berkeley Database version 6.2.23. This is the version Lore v2 uses. Bitcoin still uses 4.8 which is 10 years old! This doesn't take too long.
wget http://download.oracle.com/berkeley-db/db-6.2.23.tar.gz tar -xvzf db-6.2.23.tar.gz cd db-6.2.23/build_unix ../dist/configure --prefix=/usr --enable-compat185 --enable-dbm --disable-static --enable-cxx 
 
I find this next section of the Berkeley instructions worked better just switching to root, which can be fudged by running sudo su before the rest:
sudo su make make docdir=/usshare/doc/db-6.2.23 install chown -v -R root:root /usbin/db_* /usinclude/db{,_185,_cxx}.h /uslib/libdb*.{so,la} /usshare/doc/db-6.2.23 
 
Now we're going to go up a couple of directories to where the binaries were:
cd ../.. 
 
Then run the client!
./bitcoin-qt 
 
And there you have it. Should hopefully end up looking a bit like this: http://imgur.com/a/eEHGa
 
Using the Bootstrap can save a while syncing. Download it at: https://www.reddit.com/blackcoin/comments/6b3imq/blackcoin_bootstrapdat_up_to_block_1631800
 
Place the bootstrap.dat file into the ~/.lore directory.
 
Run ./bitcoin-qt again, it will say 'Importing Blocks' rather than 'Synchronising with Network'. My pi sync'ed fully in about 5-6 hours.
 
If you want peace of mind that Lore will always start on bootup into the Jessie w/Pixel desktop (i.e. after a power cycle), then you need to create a .desktop file in the following place.
sudo nano ~/.config/autostart/Lore.desktop 
 
And in it, enter the following (tailoring the Exec line below to the whereabouts of your bitcoin-qt file):
[Desktop Entry] Name=Blackcoin Lore Comment=Mining without the waste Exec=/home/pi/Downloads/lore-raspberrypi-armv7-jessie-pixel/bitcoin-qt Type=Application Encoding=UTF-8 Terminal=false Categories=None; 
 
Power usage and payback time
 
After a good while leaving it going by itself, the CPU load averages got down to almost zero, all of the time. Idling, the Pi uses a bit less than 3 watts. This means it would take two weeks to use one 1Kw/h of electricity.
 
If you pay e.g. 12.5 cents a unit, that's what you'd expect this to cost to run in a fortnight. That's around $0.25 a month or $3 a year. Green and cheap and helping to secure the BLK network. I paid for the year's worth of electricity in 2 days staking with 25k BLK. Makes mining look silly, huh? ;)
 
Securing your Pi
 
With staking, your wallet needs to be unlocked and as such, the keys to your wallet are on the device. In a clean and newly installed environment as described above, and if you don't allow others to use your device and there is no other software or nasties running on it, there is no real cause for concern. However, there are some basic security precautions you can take.
 
Firstly, if you have enabled SSH and are playing with your pi across your LAN (or worse, the Internet), you should immediately change the password for the default 'pi' user (which is preconfigured to be 'raspberry'). Simply log in as normal, then type:
 
passwd 
 
You'll be prompted to enter the old and the new passwords.
 
Security by default
 
Your Pi is likely, by default, to not be exposed to incoming connections from the outside world because your router is likely generating a private address range for your LAN (192.168.x.x or 10.0.x.x or 172.x.x.x) which means all incoming connections are effectively blocked at the router anyway unless you set up a 'port forward' record to allow packets arriving on certain ports to be forwarded to a specific internal IP address.
 
As for accessing your Pi across the internet, if you have set up a port forward, this likely has security ramifications. Even basic old fashioned protocols have proven in recent times to have uncaught flaws, so it's always advisable to lock down your device as much as possible, and even if you only plan to access the Pi over your LAN, install a firewall to configure this. I used one called ufw, because it's literally an uncomplicated firewall.
 
sudo apt-get install ufw sudo ufw allow from 192.168.0.0/16 to any port 22 sudo ufw --force enable 
 
This allows just port 22 (SSH) to be open on the Pi to any device on my LAN's subnet (192.168.0.x). You can change the above to a single IP address if paranoid, or add several lines, if you want to lock it down to your LAN and a specific external static IP address (e.g. a VPN service you use). To find out what subnet your router uses, just type:
 
ifconfig 
 
and you'll see on the interface you are using (either hard wired or wifi) the 192.168 or 10. or 172. prefix. Change the above rule so it matches the first two octets correctly (e.g. 10.0.0.0/16 if you're on a 10.0. address).
 
You may already use VNC to access your Pi's desktop across your LAN, this uses port 5900. Add a line like above to lock it down to an internal address. It's not a good idea to expose this port to the wider world because those connections are not encrypted and potentially could be subjected to a MITM attack.
 
You can query the status of the firewall like this:
ufw status 
 
And of course, try connecting remotely once you change the rules to see what works. You should consult the official documentation for further options: https://help.ubuntu.com/community/UFW
 
Back up & Recovery
 
There are again many ways to tackle this so I'll just speak about my basic precautions in this regard. Don't take it as a be-all-and-end-all!
 
The wallet.dat file is the key file (literally) containing all the private/public keys and transactions. This can be found in:
 
~/.lore 
 
You can navigate there using Jessie w/Pixel's own file manager or in a terminal window (cd ~/.lore). You can copy this file or, if you'd rather keep a plain text file of all your public and private keys, use the 'dumpwallet' command in the console. In Lore, go to Help > Debug Window > Console and type 'dumpwallet myfilename' where myfilename is the file you want it to spit out with all your keys in it. This file will end up in the same place you launch bitcoin-qt from.
 
The instructions earlier on, when running Lore for the first time intentionally left out encrypting your wallet.dat file because in order for the wallet to stake upon startup, it needs to have a decrypted key already. This isn't perfect, but after a power cycle, it would never stake unless you left it decrypted. So the best practice here is as soon as the wallet.dat file has left your device, i.e. you copy it to a USB stick for example, put it in an encrypted folder or drive (or both).
 
In Windows, one way is to use Bitlocker drive encryption for the entire drive. You should follow the instructions here to encrypt your flash drive before your wallet.dat is on there, and don't forget the password!!
http://infosec.nmsu.edu/instructions-guides/how-to-enable-bitlocker-to-go-for-external-hard-drives-and-usb-flash-drives/
 
On the Mac, I use a software package called Concealer to encrypt files I store on the Mac itself: http://www.belightsoft.com/products/conceale   There are almost certainly free packages with similar functionality, I have just used that one for years.
 
Either way, if you want to just make sure your USB drive is encrypted, you can do so in one-click in Finder before you put the sensitive files on it: http://lifehacker.com/encrypt-a-usb-stick-in-finder-with-a-click-1594798016
 
Note that these disk encryption methods may mean having to access the USB stick on a PC or Mac in order to retrieve the files in the event of a disaster. Be aware this may mean exposing them to more security issues if your computer is in any way compromised or someone nefarious has access to your computer. There are more 'manual' ways of backing up and recovering, such as literally writing down private/public key pairs which this guide doesn't go into, but may suit you better if paranoid about your setup.
 
Recovery
 
The wallet.dat file has everything in it you need to recover your wallet, or if you used 'dumpwallet', the file you saved out has all the keys.
 
Wallet.dat method: Install Lore as normal then replace any auto-generated wallet.dat in ~/.lore directory with your backup. If a lot of time has elapsed and many transactions have occurred since your backup, launch lore with:
./bitcoin-qt -rescan 
 
And if that doesn't do the job, do a full reindex of the blockchain:
 
./bitcoin-qt -reindex 
 
If you used the dumpwallet command, install Lore then place the file containing all the keys that you saved out in the same directory as bitcoin-qt. In Lore, go to Help > Debug Window > Console and type 'importwallet myfilename' where myfilename is that file containing all the keys. The wallet should automatically rescan for transactions at that point and you should be good to go.
 
There are a million ways to do effective security and disaster recovery, but I hope this shows you a couple of basic precautionary ways. There are discussions about better ways to stake without compromising too much security which are happening all the time and developments in this regard will happen in time.
 
In the meantime, feel free to comment with your best practices.
 
submitted by patcrypt to blackcoin [link] [comments]

Antminer S9 no longer hashing?

Good morning folks,
I have an Antminer S9 that has performed flawlessly. After I moved it to a better location, I noticed that it no longer seems to be working. The green light is flashing, but it doesn't seem to be hashing to my pool (Nicehash).
I'm fairly new to Bitcoining mining and can't make sense of some of the information on my status screen. Before I jump into Bitmain support, I was wondering if anyone could clue me in as to what the problem might be.
https://s15.postimg.cc/i0n5qsyoInked_Capture_LI.jpg
I'll post my Kernal Log here.
Thank you in advance!!!
KERNAL LOG: [ 0.000000] Booting Linux on physical CPU 0x0
[ 0.000000] Linux version 3.14.0-xilinx-ge8a2f71-dirty ([email protected]) (gcc version 4.8.3 20140320 (prerelease) (Sourcery CodeBench Lite 2014.05-23) ) #82 SMP PREEMPT Tue May 16 19:49:53 CST 2017
[ 0.000000] CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=18c5387d
[ 0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[ 0.000000] Machine model: Xilinx Zynq
[ 0.000000] cma: CMA: reserved 128 MiB at 27800000
[ 0.000000] Memory policy: Data cache writealloc
[ 0.000000] On node 0 totalpages: 258048
[ 0.000000] free_area_init_node: node 0, pgdat c0740a40, node_mem_map e6fd8000
[ 0.000000] Normal zone: 1520 pages used for memmap
[ 0.000000] Normal zone: 0 pages reserved
[ 0.000000] Normal zone: 194560 pages, LIFO batch:31
[ 0.000000] HighMem zone: 496 pages used for memmap
[ 0.000000] HighMem zone: 63488 pages, LIFO batch:15
[ 0.000000] PERCPU: Embedded 8 pages/cpu @e6fc0000 s9088 r8192 d15488 u32768
[ 0.000000] pcpu-alloc: s9088 r8192 d15488 u32768 alloc=8*4096
[ 0.000000] pcpu-alloc: [0] 0 [0] 1
[ 0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 256528
[ 0.000000] Kernel command line: noinitrd mem=1008M console=ttyPS0,115200 root=ubi0:rootfs ubi.mtd=1 rootfstype=ubifs rw rootwait
[ 0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)
[ 0.000000] Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
[ 0.000000] Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
[ 0.000000] Memory: 884148K/1032192K available (5032K kernel code, 283K rwdata, 1916K rodata, 204K init, 258K bss, 148044K reserved, 253952K highmem)
[ 0.000000] Virtual kernel memory layout:
[ 0.000000] vector : 0xffff0000 - 0xffff1000 ( 4 kB)
[ 0.000000] fixmap : 0xfff00000 - 0xfffe0000 ( 896 kB)
[ 0.000000] vmalloc : 0xf0000000 - 0xff000000 ( 240 MB)
[ 0.000000] lowmem : 0xc0000000 - 0xef800000 ( 760 MB)
[ 0.000000] pkmap : 0xbfe00000 - 0xc0000000 ( 2 MB)
[ 0.000000] modules : 0xbf000000 - 0xbfe00000 ( 14 MB)
[ 0.000000] .text : 0xc0008000 - 0xc06d1374 (6949 kB)
[ 0.000000] .init : 0xc06d2000 - 0xc0705380 ( 205 kB)
[ 0.000000] .data : 0xc0706000 - 0xc074cf78 ( 284 kB)
[ 0.000000] .bss : 0xc074cf84 - 0xc078d9fc ( 259 kB)
[ 0.000000] Preemptible hierarchical RCU implementation.
[ 0.000000] Dump stacks of tasks blocking RCU-preempt GP.
[ 0.000000] RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2.
[ 0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2
[ 0.000000] NR_IRQS:16 nr_irqs:16 16
[ 0.000000] ps7-slcr mapped to f0004000
[ 0.000000] zynq_clock_init: clkc starts at f0004100
[ 0.000000] Zynq clock init
[ 0.000015] sched_clock: 64 bits at 333MHz, resolution 3ns, wraps every 3298534883328ns
[ 0.000308] ps7-ttc #0 at f0006000, irq=43
[ 0.000618] Console: colour dummy device 80x30
[ 0.000658] Calibrating delay loop... 1325.46 BogoMIPS (lpj=6627328)
[ 0.040207] pid_max: default: 32768 minimum: 301
[ 0.040436] Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
[ 0.040459] Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)
[ 0.042612] CPU: Testing write buffer coherency: ok
[ 0.042974] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000
[ 0.043036] Setting up static identity map for 0x4c4b00 - 0x4c4b58
[ 0.043263] L310 cache controller enabled
[ 0.043282] l2x0: 8 ways, CACHE_ID 0x410000c8, AUX_CTRL 0x72760000, Cache size: 512 kB
[ 0.121037] CPU1: Booted secondary processor
[ 0.210227] CPU1: thread -1, cpu 1, socket 0, mpidr 80000001
[ 0.210357] Brought up 2 CPUs
[ 0.210376] SMP: Total of 2 processors activated.
[ 0.210385] CPU: All CPU(s) started in SVC mode.
[ 0.211051] devtmpfs: initialized
[ 0.213481] VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4
[ 0.214724] regulator-dummy: no parameters
[ 0.223736] NET: Registered protocol family 16
[ 0.226067] DMA: preallocated 256 KiB pool for atomic coherent allocations
[ 0.228361] cpuidle: using governor ladder
[ 0.228374] cpuidle: using governor menu
[ 0.235908] syscon f8000000.ps7-slcr: regmap [mem 0xf8000000-0xf8000fff] registered
[ 0.237440] hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
[ 0.237453] hw-breakpoint: maximum watchpoint size is 4 bytes.
[ 0.237572] zynq-ocm f800c000.ps7-ocmc: ZYNQ OCM pool: 256 KiB @ 0xf0080000
[ 0.259435] bio: create slab at 0
[ 0.261172] vgaarb: loaded
[ 0.261915] SCSI subsystem initialized
[ 0.262814] usbcore: registered new interface driver usbfs
[ 0.262985] usbcore: registered new interface driver hub
[ 0.263217] usbcore: registered new device driver usb
[ 0.263743] media: Linux media interface: v0.10
[ 0.263902] Linux video capture interface: v2.00
[ 0.264150] pps_core: LinuxPPS API ver. 1 registered
[ 0.264162] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <[[email protected]](mailto:[email protected])>
[ 0.264286] PTP clock support registered
[ 0.264656] EDAC MC: Ver: 3.0.0
[ 0.265719] Advanced Linux Sound Architecture Driver Initialized.
[ 0.268708] DMA-API: preallocated 4096 debug entries
[ 0.268724] DMA-API: debugging enabled by kernel config
[ 0.268820] Switched to clocksource arm_global_timer
[ 0.289596] NET: Registered protocol family 2
[ 0.290280] TCP established hash table entries: 8192 (order: 3, 32768 bytes)
[ 0.290375] TCP bind hash table entries: 8192 (order: 4, 65536 bytes)
[ 0.290535] TCP: Hash tables configured (established 8192 bind 8192)
[ 0.290612] TCP: reno registered
[ 0.290633] UDP hash table entries: 512 (order: 2, 16384 bytes)
[ 0.290689] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)
[ 0.290971] NET: Registered protocol family 1
[ 0.291346] RPC: Registered named UNIX socket transport module.
[ 0.291359] RPC: Registered udp transport module.
[ 0.291368] RPC: Registered tcp transport module.
[ 0.291376] RPC: Registered tcp NFSv4.1 backchannel transport module.
[ 0.291391] PCI: CLS 0 bytes, default 64
[ 0.291857] hw perfevents: enabled with ARMv7 Cortex-A9 PMU driver, 7 counters available
[ 0.293945] futex hash table entries: 512 (order: 3, 32768 bytes)
[ 0.295408] bounce pool size: 64 pages
[ 0.296323] jffs2: version 2.2. (NAND) © 2001-2006 Red Hat, Inc.
[ 0.296525] msgmni has been set to 1486
[ 0.297330] io scheduler noop registered
[ 0.297343] io scheduler deadline registered
[ 0.297385] io scheduler cfq registered (default)
[ 0.308358] dma-pl330 f8003000.ps7-dma: Loaded driver for PL330 DMAC-2364208
[ 0.308380] dma-pl330 f8003000.ps7-dma: DBUFF-128x8bytes Num_Chans-8 Num_Peri-4 Num_Events-16
[ 0.434378] e0001000.serial: ttyPS0 at MMIO 0xe0001000 (irq = 82, base_baud = 3124999) is a xuartps
[ 1.006815] console [ttyPS0] enabled
[ 1.011106] xdevcfg f8007000.ps7-dev-cfg: ioremap 0xf8007000 to f0068000
[ 1.018731] [drm] Initialized drm 1.1.0 20060810
[ 1.036029] brd: module loaded
[ 1.045494] loop: module loaded
[ 1.055163] e1000e: Intel(R) PRO/1000 Network Driver - 2.3.2-k
[ 1.060985] e1000e: Copyright(c) 1999 - 2013 Intel Corporation.
[ 1.068779] libphy: XEMACPS mii bus: probed
[ 1.073341] ------------- phy_id = 0x3625e62
[ 1.078112] xemacps e000b000.ps7-ethernet: pdev->id -1, baseaddr 0xe000b000, irq 54
[ 1.087072] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
[ 1.093912] ehci-pci: EHCI PCI platform driver
[ 1.101155] zynq-dr e0002000.ps7-usb: Unable to init USB phy, missing?
[ 1.107952] usbcore: registered new interface driver usb-storage
[ 1.114850] mousedev: PS/2 mouse device common for all mice
[ 1.120975] i2c /dev entries driver
[ 1.127946] zynq-edac f8006000.ps7-ddrc: ecc not enabled
[ 1.133474] cpufreq_cpu0: failed to get cpu0 regulator: -19
[ 1.139426] Xilinx Zynq CpuIdle Driver started
[ 1.144261] sdhci: Secure Digital Host Controller Interface driver
[ 1.150384] sdhci: Copyright(c) Pierre Ossman
[ 1.154700] sdhci-pltfm: SDHCI platform and OF driver helper
[ 1.161601] mmc0: no vqmmc regulator found
[ 1.165614] mmc0: no vmmc regulator found
[ 1.208845] mmc0: SDHCI controller on e0100000.ps7-sdio [e0100000.ps7-sdio] using ADMA
[ 1.217539] usbcore: registered new interface driver usbhid
[ 1.223054] usbhid: USB HID core driver
[ 1.227806] nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xda
[ 1.234107] nand: Micron MT29F2G08ABAEAWP
[ 1.238074] nand: 256MiB, SLC, page size: 2048, OOB size: 64
[ 1.244027] Bad block table found at page 131008, version 0x01
[ 1.250251] Bad block table found at page 130944, version 0x01
[ 1.256303] 3 ofpart partitions found on MTD device pl353-nand
[ 1.262080] Creating 3 MTD partitions on "pl353-nand":
[ 1.267174] 0x000000000000-0x000002000000 : "BOOT.bin-env-dts-kernel"
[ 1.275230] 0x000002000000-0x00000b000000 : "angstram-rootfs"
[ 1.282582] 0x00000b000000-0x000010000000 : "upgrade-rootfs"
[ 1.291630] TCP: cubic registered
[ 1.294869] NET: Registered protocol family 17
[ 1.299597] Registering SWP/SWPB emulation handler
[ 1.305497] regulator-dummy: disabling
[ 1.309875] UBI: attaching mtd1 to ubi0
[ 1.836565] UBI: scanning is finished
[ 1.848221] UBI: attached mtd1 (name "angstram-rootfs", size 144 MiB) to ubi0
[ 1.855302] UBI: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
[ 1.862063] UBI: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
[ 1.868728] UBI: VID header offset: 2048 (aligned 2048), data offset: 4096
[ 1.875605] UBI: good PEBs: 1152, bad PEBs: 0, corrupted PEBs: 0
[ 1.881586] UBI: user volume: 1, internal volumes: 1, max. volumes count: 128
[ 1.888693] UBI: max/mean erase counter: 4/1, WL threshold: 4096, image sequence number: 1134783803
[ 1.897736] UBI: available PEBs: 0, total reserved PEBs: 1152, PEBs reserved for bad PEB handling: 40
[ 1.906953] UBI: background thread "ubi_bgt0d" started, PID 1080
[ 1.906959] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
[ 1.911038] ALSA device list:
[ 1.911042] No soundcards found.
[ 1.927420] UBIFS: background thread "ubifs_bgt0_0" started, PID 1082
[ 1.956473] UBIFS: recovery needed
[ 2.016970] UBIFS: recovery completed
[ 2.020709] UBIFS: mounted UBI device 0, volume 0, name "rootfs"
[ 2.026635] UBIFS: LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[ 2.035771] UBIFS: FS size: 128626688 bytes (122 MiB, 1013 LEBs), journal size 9023488 bytes (8 MiB, 72 LEBs)
[ 2.045653] UBIFS: reserved for root: 0 bytes (0 KiB)
[ 2.050693] UBIFS: media format: w4/r0 (latest is w4/r0), UUID B079DD56-06BB-4E31-8F5E-A6604F480DB2, small LPT model
[ 2.061987] VFS: Mounted root (ubifs filesystem) on device 0:11.
[ 2.069184] devtmpfs: mounted
[ 2.072297] Freeing unused kernel memory: 204K (c06d2000 - c0705000)
[ 2.920928] random: dd urandom read with 0 bits of entropy available
[ 3.318860]
[ 3.318860] bcm54xx_config_init
[ 3.928853]
[ 3.928853] bcm54xx_config_init
[ 7.929682] xemacps e000b000.ps7-ethernet: Set clk to 124999998 Hz
[ 7.935787] xemacps e000b000.ps7-ethernet: link up (1000/FULL)
[ 22.563181] In axi fpga driver!
[ 22.566260] request_mem_region OK!
[ 22.569676] AXI fpga dev virtual address is 0xf01fe000
[ 22.574751] *base_vir_addr = 0x8c510
[ 22.590723] In fpga mem driver!
[ 22.593791] request_mem_region OK!
[ 22.597361] fpga mem virtual address is 0xf3000000
[ 23.408156]
[ 23.408156] bcm54xx_config_init
[ 24.038071]
[ 24.038071] bcm54xx_config_init
[ 28.038487] xemacps e000b000.ps7-ethernet: Set clk to 124999998 Hz
[ 28.044593] xemacps e000b000.ps7-ethernet: link up (1000/FULL)
This is XILINX board. Totalram: 1039794176
Detect 1GB control board of XILINX
DETECT HW version=0008c510
miner ID : 8118b4c610358854
Miner Type = S9
AsicType = 1387
real AsicNum = 63
use critical mode to search freq...
get PLUG ON=0x000000e0
Find hashboard on Chain[5]
Find hashboard on Chain[6]
Find hashboard on Chain[7]
set_reset_allhashboard = 0x0000ffff
Check chain[5] PIC fw version=0x03
Check chain[6] PIC fw version=0x03
Check chain[7] PIC fw version=0x03
chain[5]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[5] has freq in PIC and will jump over...
Chain[5] has core num in PIC
Chain[5] ASIC[15] has core num=5
Check chain[5] PIC fw version=0x03
chain[6]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[6] has freq in PIC and will jump over...
Chain[6] has core num in PIC
Chain[6] ASIC[17] has core num=8
Check chain[6] PIC fw version=0x03
chain[7]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[7] has freq in PIC and will jump over...
Chain[7] has core num in PIC
Chain[7] ASIC[8] has core num=13
Chain[7] ASIC[9] has core num=11
Chain[7] ASIC[13] has core num=11
Chain[7] ASIC[19] has core num=14
Chain[7] ASIC[30] has core num=6
Chain[7] ASIC[32] has core num=1
Chain[7] ASIC[42] has core num=2
Chain[7] ASIC[55] has core num=1
Chain[7] ASIC[57] has core num=2
Check chain[7] PIC fw version=0x03
get PIC voltage=108 on chain[5], value=880
get PIC voltage=74 on chain[6], value=900
get PIC voltage=108 on chain[7], value=880
set_reset_allhashboard = 0x00000000
chain[5] temp offset record: 62,0,0,0,0,0,35,28
chain[5] temp chip I2C addr=0x98
chain[5] has no middle temp, use special fix mode.
chain[6] temp offset record: 62,0,0,0,0,0,35,28
chain[6] temp chip I2C addr=0x98
chain[6] has no middle temp, use special fix mode.
chain[7] temp offset record: 62,0,0,0,0,0,35,28
chain[7] temp chip I2C addr=0x98
chain[7] has no middle temp, use special fix mode.
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
CRC error counter=0
set command mode to VIL
--- check asic number
After Get ASIC NUM CRC error counter=0
set_baud=0
The min freq=700
set real timeout 52, need sleep=379392
After TEST CRC error counter=0
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
search freq for 1 times, completed chain = 3, total chain num = 3
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
restart Miner chance num=2
waiting for receive_func to exit!
waiting for pic heart to exit!
bmminer not found= 1643 root 0:00 grep bmminer
bmminer not found, restart bmminer ...
This is user mode for mining
Detect 1GB control board of XILINX
Miner Type = S9
Miner compile time: Fri Nov 17 17:57:49 CST 2017 type: Antminer S9set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
set_reset_allhashboard = 0x0000ffff
miner ID : 8118b4c610358854
set_reset_allhashboard = 0x0000ffff
Checking fans!get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[5] speed=13440
get fan[2] speed=6120
get fan[5] speed=13440
get fan[2] speed=6120
get fan[5] speed=13440
chain[5]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J6] has backup chain_voltage=880
Chain[J6] test patten OK temp=-126
Check chain[5] PIC fw version=0x03
chain[6]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J7] has backup chain_voltage=900
Chain[J7] test patten OK temp=-120
Check chain[6] PIC fw version=0x03
chain[7]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J8] has backup chain_voltage=880
Chain[J8] test patten OK temp=-125
Check chain[7] PIC fw version=0x03
Chain[J6] orignal chain_voltage_pic=108 value=880
Chain[J7] orignal chain_voltage_pic=74 value=900
Chain[J8] orignal chain_voltage_pic=108 value=880
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
Chain[J6] has 63 asic
Chain[J7] has 63 asic
Chain[J8] has 63 asic
Chain[J6] has core num in PIC
Chain[J6] ASIC[15] has core num=5
Chain[J7] has core num in PIC
Chain[J7] ASIC[17] has core num=8
Chain[J8] has core num in PIC
Chain[J8] ASIC[8] has core num=13
Chain[J8] ASIC[9] has core num=11
Chain[J8] ASIC[13] has core num=11
Chain[J8] ASIC[19] has core num=14
Chain[J8] ASIC[30] has core num=6
Chain[J8] ASIC[32] has core num=1
Chain[J8] ASIC[42] has core num=2
Chain[J8] ASIC[55] has core num=1
Chain[J8] ASIC[57] has core num=2
miner total rate=13999GH/s fixed rate=13500GH/s
read PIC voltage=940 on chain[5]
Chain:5 chipnum=63
Chain[J6] voltage added=0.2V
Chain:5 temp offset=0
Chain:5 base freq=487
Asic[ 0]:618
Asic[ 1]:631 Asic[ 2]:681 Asic[ 3]:618 Asic[ 4]:631 Asic[ 5]:681 Asic[ 6]:618 Asic[ 7]:631 Asic[ 8]:675
Asic[ 9]:618 Asic[10]:631 Asic[11]:681 Asic[12]:631 Asic[13]:637 Asic[14]:606 Asic[15]:487 Asic[16]:637
Asic[17]:675 Asic[18]:618 Asic[19]:637 Asic[20]:675 Asic[21]:631 Asic[22]:650 Asic[23]:687 Asic[24]:631
Asic[25]:537 Asic[26]:687 Asic[27]:631 Asic[28]:587 Asic[29]:687 Asic[30]:612 Asic[31]:650 Asic[32]:687
Asic[33]:631 Asic[34]:650 Asic[35]:687 Asic[36]:631 Asic[37]:662 Asic[38]:693 Asic[39]:631 Asic[40]:662
Asic[41]:662 Asic[42]:543 Asic[43]:668 Asic[44]:693 Asic[45]:568 Asic[46]:675 Asic[47]:700 Asic[48]:631
Asic[49]:568 Asic[50]:700 Asic[51]:631 Asic[52]:625 Asic[53]:700 Asic[54]:631 Asic[55]:675 Asic[56]:662
Asic[57]:631 Asic[58]:662 Asic[59]:687 Asic[60]:631 Asic[61]:681 Asic[62]:700
Chain:5 max freq=700
Chain:5 min freq=487
read PIC voltage=940 on chain[6]
Chain:6 chipnum=63
Chain[J7] voltage added=0.1V
Chain:6 temp offset=0
Chain:6 base freq=687
Asic[ 0]:650
Asic[ 1]:650 Asic[ 2]:650 Asic[ 3]:650 Asic[ 4]:650 Asic[ 5]:650 Asic[ 6]:650 Asic[ 7]:650 Asic[ 8]:650
Asic[ 9]:650 Asic[10]:650 Asic[11]:650 Asic[12]:650 Asic[13]:650 Asic[14]:650 Asic[15]:650 Asic[16]:650
Asic[17]:650 Asic[18]:650 Asic[19]:650 Asic[20]:650 Asic[21]:650 Asic[22]:650 Asic[23]:650 Asic[24]:650
Asic[25]:650 Asic[26]:656 Asic[27]:656 Asic[28]:656 Asic[29]:656 Asic[30]:656 Asic[31]:656 Asic[32]:656
Asic[33]:656 Asic[34]:656 Asic[35]:656 Asic[36]:656 Asic[37]:656 Asic[38]:656 Asic[39]:656 Asic[40]:656
Asic[41]:656 Asic[42]:656 Asic[43]:656 Asic[44]:656 Asic[45]:656 Asic[46]:656 Asic[47]:656 Asic[48]:656
Asic[49]:656 Asic[50]:656 Asic[51]:656 Asic[52]:656 Asic[53]:656 Asic[54]:656 Asic[55]:656 Asic[56]:656
Asic[57]:656 Asic[58]:656 Asic[59]:656 Asic[60]:656 Asic[61]:656 Asic[62]:656
Chain:6 max freq=656
Chain:6 min freq=650
read PIC voltage=940 on chain[7]
Chain:7 chipnum=63
Chain[J8] voltage added=0.2V
Chain:7 temp offset=0
Chain:7 base freq=637
Asic[ 0]:656
Asic[ 1]:656 Asic[ 2]:656 Asic[ 3]:656 Asic[ 4]:656 Asic[ 5]:656 Asic[ 6]:656 Asic[ 7]:656 Asic[ 8]:637
Asic[ 9]:637 Asic[10]:656 Asic[11]:656 Asic[12]:656 Asic[13]:637 Asic[14]:656 Asic[15]:662 Asic[16]:662
Asic[17]:662 Asic[18]:662 Asic[19]:637 Asic[20]:662 Asic[21]:662 Asic[22]:662 Asic[23]:662 Asic[24]:662
Asic[25]:662 Asic[26]:662 Asic[27]:662 Asic[28]:662 Asic[29]:662 Asic[30]:637 Asic[31]:662 Asic[32]:662
Asic[33]:662 Asic[34]:662 Asic[35]:662 Asic[36]:662 Asic[37]:662 Asic[38]:662 Asic[39]:662 Asic[40]:662
Asic[41]:662 Asic[42]:650 Asic[43]:662 Asic[44]:662 Asic[45]:662 Asic[46]:662 Asic[47]:662 Asic[48]:662
Asic[49]:662 Asic[50]:662 Asic[51]:662 Asic[52]:662 Asic[53]:662 Asic[54]:662 Asic[55]:650 Asic[56]:662
Asic[57]:650 Asic[58]:662 Asic[59]:662 Asic[60]:662 Asic[61]:662 Asic[62]:662
Chain:7 max freq=662
Chain:7 min freq=637
Miner fix freq ...
read PIC voltage=940 on chain[5]
Chain:5 chipnum=63
Chain[J6] voltage added=0.2V
Chain:5 temp offset=0
Chain:5 base freq=487
Asic[ 0]:618
Asic[ 1]:631 Asic[ 2]:650 Asic[ 3]:618 Asic[ 4]:631 Asic[ 5]:656 Asic[ 6]:618 Asic[ 7]:631 Asic[ 8]:656
Asic[ 9]:618 Asic[10]:631 Asic[11]:656 Asic[12]:631 Asic[13]:637 Asic[14]:606 Asic[15]:487 Asic[16]:637
Asic[17]:656 Asic[18]:618 Asic[19]:637 Asic[20]:656 Asic[21]:631 Asic[22]:650 Asic[23]:656 Asic[24]:631
Asic[25]:537 Asic[26]:656 Asic[27]:631 Asic[28]:587 Asic[29]:656 Asic[30]:612 Asic[31]:650 Asic[32]:656
Asic[33]:631 Asic[34]:650 Asic[35]:656 Asic[36]:631 Asic[37]:656 Asic[38]:656 Asic[39]:631 Asic[40]:656
Asic[41]:656 Asic[42]:543 Asic[43]:656 Asic[44]:656 Asic[45]:568 Asic[46]:656 Asic[47]:656 Asic[48]:631
Asic[49]:568 Asic[50]:656 Asic[51]:631 Asic[52]:625 Asic[53]:656 Asic[54]:631 Asic[55]:656 Asic[56]:656
Asic[57]:631 Asic[58]:656 Asic[59]:656 Asic[60]:631 Asic[61]:656 Asic[62]:656
Chain:5 max freq=656
Chain:5 min freq=487
read PIC voltage=940 on chain[6]
Chain:6 chipnum=63
Chain[J7] voltage added=0.1V
Chain:6 temp offset=0
Chain:6 base freq=687
Asic[ 0]:631
Asic[ 1]:631 Asic[ 2]:631 Asic[ 3]:631 Asic[ 4]:631 Asic[ 5]:631 Asic[ 6]:631 Asic[ 7]:631 Asic[ 8]:631
Asic[ 9]:631 Asic[10]:631 Asic[11]:631 Asic[12]:631 Asic[13]:631 Asic[14]:631 Asic[15]:631 Asic[16]:631
Asic[17]:631 Asic[18]:631 Asic[19]:631 Asic[20]:631 Asic[21]:631 Asic[22]:631 Asic[23]:631 Asic[24]:631
Asic[25]:631 Asic[26]:631 Asic[27]:631 Asic[28]:631 Asic[29]:631 Asic[30]:631 Asic[31]:631 Asic[32]:631
Asic[33]:631 Asic[34]:631 Asic[35]:637 Asic[36]:637 Asic[37]:637 Asic[38]:637 Asic[39]:637 Asic[40]:637
Asic[41]:637 Asic[42]:637 Asic[43]:637 Asic[44]:637 Asic[45]:637 Asic[46]:637 Asic[47]:637 Asic[48]:637
Asic[49]:637 Asic[50]:637 Asic[51]:637 Asic[52]:637 Asic[53]:637 Asic[54]:637 Asic[55]:637 Asic[56]:637
Asic[57]:637 Asic[58]:637 Asic[59]:637 Asic[60]:637 Asic[61]:637 Asic[62]:637
Chain:6 max freq=637
Chain:6 min freq=631
read PIC voltage=940 on chain[7]
Chain:7 chipnum=63
Chain[J8] voltage added=0.2V
Chain:7 temp offset=0
Chain:7 base freq=637
Asic[ 0]:637
Asic[ 1]:637 Asic[ 2]:637 Asic[ 3]:637 Asic[ 4]:637 Asic[ 5]:637 Asic[ 6]:637 Asic[ 7]:637 Asic[ 8]:637
Asic[ 9]:637 Asic[10]:637 Asic[11]:637 Asic[12]:637 Asic[13]:637 Asic[14]:637 Asic[15]:637 Asic[16]:637
Asic[17]:637 Asic[18]:637 Asic[19]:637 Asic[20]:637 Asic[21]:637 Asic[22]:637 Asic[23]:637 Asic[24]:637
Asic[25]:637 Asic[26]:637 Asic[27]:637 Asic[28]:637 Asic[29]:637 Asic[30]:637 Asic[31]:637 Asic[32]:637
Asic[33]:637 Asic[34]:637 Asic[35]:637 Asic[36]:637 Asic[37]:637 Asic[38]:637 Asic[39]:637 Asic[40]:637
Asic[41]:637 Asic[42]:637 Asic[43]:637 Asic[44]:637 Asic[45]:637 Asic[46]:637 Asic[47]:637 Asic[48]:637
Asic[49]:643 Asic[50]:643 Asic[51]:643 Asic[52]:643 Asic[53]:643 Asic[54]:643 Asic[55]:643 Asic[56]:643
Asic[57]:643 Asic[58]:643 Asic[59]:643 Asic[60]:643 Asic[61]:643 Asic[62]:643
Chain:7 max freq=643
Chain:7 min freq=637
max freq = 656
set baud=1
Chain[J6] PIC temp offset=62,0,0,0,0,0,35,28
chain[5] temp chip I2C addr=0x98
chain[5] has no middle temp, use special fix mode.
Chain[J6] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[5] chip[244] local:26 remote:27 offset:29
Chain[J6] chip[244] get middle temp offset=29 typeID=55
Chain[J7] PIC temp offset=62,0,0,0,0,0,35,28
chain[6] temp chip I2C addr=0x98
chain[6] has no middle temp, use special fix mode.
Chain[J7] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[6] chip[244] local:26 remote:27 offset:29
Chain[J7] chip[244] get middle temp offset=29 typeID=55
Chain[J8] PIC temp offset=62,0,0,0,0,0,35,28
chain[7] temp chip I2C addr=0x98
chain[7] has no middle temp, use special fix mode.
Chain[J8] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[7] chip[244] local:26 remote:28 offset:28
Chain[J8] chip[244] get middle temp offset=28 typeID=55
miner rate=13501 voltage limit=900 on chain[5]
get PIC voltage=880 on chain[5], check: must be < 900
miner rate=13501 voltage limit=900 on chain[6]
get PIC voltage=900 on chain[6], check: must be < 900
miner rate=13501 voltage limit=900 on chain[7]
get PIC voltage=880 on chain[7], check: must be < 900
Chain[J6] set working voltage=880 [108]
Chain[J7] set working voltage=900 [74]
Chain[J8] set working voltage=880 [108]
do heat board 8xPatten for 1 times
start send works on chain[5]
start send works on chain[6]
start send works on chain[7]
get send work num :57456 on Chain[5]
get send work num :57456 on Chain[6]
get send work num :57456 on Chain[7]
wait recv nonce on chain[5]
wait recv nonce on chain[6]
wait recv nonce on chain[7]
get nonces on chain[5]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=912 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=912 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=912
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
freq[00]=618 freq[01]=631 freq[02]=650 freq[03]=618 freq[04]=631 freq[05]=656 freq[06]=618 freq[07]=631
freq[08]=656 freq[09]=618 freq[10]=631 freq[11]=656 freq[12]=631 freq[13]=637 freq[14]=606 freq[15]=487
freq[16]=637 freq[17]=656 freq[18]=618 freq[19]=637 freq[20]=656 freq[21]=631 freq[22]=650 freq[23]=656
freq[24]=631 freq[25]=537 freq[26]=656 freq[27]=631 freq[28]=587 freq[29]=656 freq[30]=612 freq[31]=650
freq[32]=656 freq[33]=631 freq[34]=650 freq[35]=656 freq[36]=631 freq[37]=656 freq[38]=656 freq[39]=631
freq[40]=656 freq[41]=656 freq[42]=543 freq[43]=656 freq[44]=656 freq[45]=568 freq[46]=656 freq[47]=656
freq[48]=631 freq[49]=568 freq[50]=656 freq[51]=631 freq[52]=625 freq[53]=656 freq[54]=631 freq[55]=656
freq[56]=656 freq[57]=631 freq[58]=656 freq[59]=656 freq[60]=631 freq[61]=656 freq[62]=656
total valid nonce number:57456
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:25912
last_nonce_num:14370
get nonces on chain[6]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=912 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=912 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=912
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
freq[00]=631 freq[01]=631 freq[02]=631 freq[03]=631 freq[04]=631 freq[05]=631 freq[06]=631 freq[07]=631
freq[08]=631 freq[09]=631 freq[10]=631 freq[11]=631 freq[12]=631 freq[13]=631 freq[14]=631 freq[15]=631
freq[16]=631 freq[17]=631 freq[18]=631 freq[19]=631 freq[20]=631 freq[21]=631 freq[22]=631 freq[23]=631
freq[24]=631 freq[25]=631 freq[26]=631 freq[27]=631 freq[28]=631 freq[29]=631 freq[30]=631 freq[31]=631
freq[32]=631 freq[33]=631 freq[34]=631 freq[35]=637 freq[36]=637 freq[37]=637 freq[38]=637 freq[39]=637
freq[40]=637 freq[41]=637 freq[42]=637 freq[43]=637 freq[44]=637 freq[45]=637 freq[46]=637 freq[47]=637
freq[48]=637 freq[49]=637 freq[50]=637 freq[51]=637 freq[52]=637 freq[53]=637 freq[54]=637 freq[55]=637
freq[56]=637 freq[57]=637 freq[58]=637 freq[59]=637 freq[60]=637 freq[61]=637 freq[62]=637
total valid nonce number:57456
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:25987
last_nonce_num:14368
get nonces on chain[7]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=907 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=909 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=911
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
asic[08]=907
core[049]=7 core[053]=5 core[056]=7
asic[19]=909
core[064]=7 core[112]=6
asic[55]=911
core[007]=7
freq[00]=637 freq[01]=637 freq[02]=637 freq[03]=637 freq[04]=637 freq[05]=637 freq[06]=637 freq[07]=637
freq[08]=637 freq[09]=637 freq[10]=637 freq[11]=637 freq[12]=637 freq[13]=637 freq[14]=637 freq[15]=637
freq[16]=637 freq[17]=637 freq[18]=637 freq[19]=637 freq[20]=637 freq[21]=637 freq[22]=637 freq[23]=637
freq[24]=637 freq[25]=637 freq[26]=637 freq[27]=637 freq[28]=637 freq[29]=637 freq[30]=637 freq[31]=637
freq[32]=637 freq[33]=637 freq[34]=637 freq[35]=637 freq[36]=637 freq[37]=637 freq[38]=637 freq[39]=637
freq[40]=637 freq[41]=637 freq[42]=637 freq[43]=637 freq[44]=637 freq[45]=637 freq[46]=637 freq[47]=637
freq[48]=637 freq[49]=643 freq[50]=643 freq[51]=643 freq[52]=643 freq[53]=643 freq[54]=643 freq[55]=643
freq[56]=643 freq[57]=643 freq[58]=643 freq[59]=643 freq[60]=643 freq[61]=643 freq[62]=643
total valid nonce number:57447
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:26183
last_nonce_num:35748
chain[5]: All chip cores are opened OK!
Test Patten on chain[5]: OK!
chain[6]: All chip cores are opened OK!
Test Patten on chain[6]: OK!
chain[7]: All chip cores are opened OK!
Test Patten on chain[7]: OK!
setStartTimePoint total_tv_start_sys=217 total_tv_end_sys=218
restartNum = 2 , auto-reinit enabled...
do read_temp_func once...
do check_asic_reg 0x08
get RT hashrate from Chain[5]: (asic index start from 1-63)
Asic[01]=72.5110 Asic[02]=68.6020 Asic[03]=74.4230 Asic[04]=74.6750 Asic[05]=71.4540 Asic[06]=77.5610 Asic[07]=74.7760 Asic[08]=74.3900
Asic[09]=77.7790 Asic[10]=76.7220 Asic[11]=73.8020 Asic[12]=68.5850 Asic[13]=76.1680 Asic[14]=72.4770 Asic[15]=73.0470 Asic[16]=57.8810
Asic[17]=74.4740 Asic[18]=76.4530 Asic[19]=67.8800 Asic[20]=70.1280 Asic[21]=73.7520 Asic[22]=74.6580 Asic[23]=73.6850 Asic[24]=78.5170
Asic[25]=73.6850 Asic[26]=63.6860 Asic[27]=80.9660 Asic[28]=73.9200 Asic[29]=68.9870 Asic[30]=75.6310 Asic[31]=74.9770 Asic[32]=69.4570
Asic[33]=74.6580 Asic[34]=79.8930 Asic[35]=76.6710 Asic[36]=74.3730 Asic[37]=66.6050 Asic[38]=76.7380 Asic[39]=71.4540 Asic[40]=69.3060
Asic[41]=72.5610 Asic[42]=73.8530 Asic[43]=58.9210 Asic[44]=75.3800 Asic[45]=73.1310 Asic[46]=68.4000 Asic[47]=77.6780 Asic[48]=73.1150
Asic[49]=69.2890 Asic[50]=62.8130 Asic[51]=74.2720 Asic[52]=73.1480 Asic[53]=67.4440 Asic[54]=72.4940 Asic[55]=68.1990 Asic[56]=72.4100
Asic[57]=75.3460 Asic[58]=66.1350 Asic[59]=72.9800 Asic[60]=78.1480 Asic[61]=72.3260 Asic[62]=72.5610 Asic[63]=77.7950
get RT hashrate from Chain[6]: (asic index start from 1-63)
Asic[01]=67.6620 Asic[02]=75.9840 Asic[03]=70.3300 Asic[04]=75.5640 Asic[05]=62.8470 Asic[06]=70.2790 Asic[07]=74.5240 Asic[08]=72.9130
Asic[09]=70.6320 Asic[10]=72.5610 Asic[11]=73.9370 Asic[12]=77.3420 Asic[13]=72.4440 Asic[14]=68.8030 Asic[15]=73.0810 Asic[16]=73.8360
Asic[17]=73.5510 Asic[18]=73.9700 Asic[19]=71.0340 Asic[20]=71.1680 Asic[21]=72.1580 Asic[22]=78.8190 Asic[23]=71.9230 Asic[24]=69.4570
Asic[25]=67.7630 Asic[26]=71.7220 Asic[27]=76.4030 Asic[28]=71.1180 Asic[29]=68.7360 Asic[30]=69.7090 Asic[31]=77.5610 Asic[32]=70.1790
Asic[33]=67.9140 Asic[34]=72.3930 Asic[35]=64.5920 Asic[36]=72.1920 Asic[37]=74.6080 Asic[38]=75.4470 Asic[39]=73.8700 Asic[40]=73.9370
Asic[41]=66.2860 Asic[42]=79.4230 Asic[43]=75.8160 Asic[44]=68.6350 Asic[45]=74.7920 Asic[46]=70.7990 Asic[47]=71.2360 Asic[48]=73.8700
Asic[49]=66.5380 Asic[50]=70.6150 Asic[51]=72.6280 Asic[52]=75.7490 Asic[53]=71.8400 Asic[54]=76.5370 Asic[55]=73.5340 Asic[56]=69.2390
Asic[57]=75.1280 Asic[58]=74.3230 Asic[59]=73.4330 Asic[60]=72.3430 Asic[61]=77.6780 Asic[62]=82.4600 Asic[63]=69.5240
get RT hashrate from Chain[7]: (asic index start from 1-63)
Asic[01]=73.5510 Asic[02]=75.9160 Asic[03]=80.1110 Asic[04]=76.9900 Asic[05]=76.1510 Asic[06]=73.5170 Asic[07]=74.9940 Asic[08]=73.1150
Asic[09]=70.6650 Asic[10]=70.6990 Asic[11]=72.4770 Asic[12]=70.1450 Asic[13]=74.3060 Asic[14]=71.8060 Asic[15]=74.7420 Asic[16]=75.6650
Asic[17]=76.8220 Asic[18]=69.5240 Asic[19]=72.0910 Asic[20]=75.2620 Asic[21]=72.0240 Asic[22]=73.2660 Asic[23]=76.2690 Asic[24]=69.9440
Asic[25]=67.7290 Asic[26]=71.7050 Asic[27]=74.6250 Asic[28]=78.2320 Asic[29]=69.8430 Asic[30]=68.4670 Asic[31]=71.5210 Asic[32]=68.9540
Asic[33]=74.6250 Asic[34]=71.8730 Asic[35]=74.4400 Asic[36]=74.8760 Asic[37]=73.9030 Asic[38]=72.9300 Asic[39]=69.6250 Asic[40]=74.9430
Asic[41]=72.7620 Asic[42]=69.4910 Asic[43]=67.4270 Asic[44]=71.4870 Asic[45]=74.4570 Asic[46]=66.6550 Asic[47]=67.5450 Asic[48]=75.4800
Asic[49]=72.2590 Asic[50]=72.9300 Asic[51]=75.6820 Asic[52]=71.9070 Asic[53]=67.9640 Asic[54]=67.8470 Asic[55]=74.3900 Asic[56]=71.0010
Asic[57]=75.8490 Asic[58]=74.9270 Asic[59]=72.3930 Asic[60]=74.3730 Asic[61]=75.5310 Asic[62]=73.8190 Asic[63]=72.4440
Check Chain[J6] ASIC RT error: (asic index start from 1-63)
Check Chain[J7] ASIC RT error: (asic index start from 1-63)
Check Chain[J8] ASIC RT error: (asic index start from 1-63)
Done check_asic_reg
do read temp on Chain[5]
Chain[5] Chip[62] TempTypeID=55 middle offset=29
Chain[5] Chip[62] local Temp=60
Chain[5] Chip[62] middle Temp=70
Special fix Chain[5] Chip[62] middle Temp = 75
Done read temp on Chain[5]
do read temp on Chain[6]
Chain[6] Chip[62] TempTypeID=55 middle offset=29
Chain[6] Chip[62] local Temp=60
Chain[6] Chip[62] middle Temp=72
Special fix Chain[6] Chip[62] middle Temp = 75
Done read temp on Chain[6]
do read temp on Chain[7]
Chain[7] Chip[62] TempTypeID=55 middle offset=28
Chain[7] Chip[62] local Temp=62
Chain[7] Chip[62] middle Temp=72
Special fix Chain[7] Chip[62] middle Temp = 77
Done read temp on Chain[7]
set FAN speed according to: temp_highest=62 temp_top1[PWM_T]=62 temp_top1[TEMP_POS_LOCAL]=62 temp_change=0 fix_fan_steps=0
FAN PWM: 74
read_temp_func Done!
CRC error counter=0
submitted by Timsierramist to BitcoinMining [link] [comments]

Antminer S9 not hashing?

Good morning folks,
I have an Antminer S9 that has performed flawlessly. After I moved it to a better location, I noticed that it no longer seems to be working. The green light is flashing, but it doesn't seem to be hashing to my pool (Nicehash).
I'm fairly new to Bitcoining mining and can't make sense of some of the information on my status screen. Before I jump into Bitmain support, I was wondering if anyone could clue me in as to what the problem might be.
https://s15.postimg.cc/i0n5qsyoInked_Capture_LI.jpg
I'll post my Kernal Log here.
Thank you in advance!!!
KERNAL LOG: [ 0.000000] Booting Linux on physical CPU 0x0
[ 0.000000] Linux version 3.14.0-xilinx-ge8a2f71-dirty ([email protected]) (gcc version 4.8.3 20140320 (prerelease) (Sourcery CodeBench Lite 2014.05-23) ) #82 SMP PREEMPT Tue May 16 19:49:53 CST 2017
[ 0.000000] CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=18c5387d
[ 0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[ 0.000000] Machine model: Xilinx Zynq
[ 0.000000] cma: CMA: reserved 128 MiB at 27800000
[ 0.000000] Memory policy: Data cache writealloc
[ 0.000000] On node 0 totalpages: 258048
[ 0.000000] free_area_init_node: node 0, pgdat c0740a40, node_mem_map e6fd8000
[ 0.000000] Normal zone: 1520 pages used for memmap
[ 0.000000] Normal zone: 0 pages reserved
[ 0.000000] Normal zone: 194560 pages, LIFO batch:31
[ 0.000000] HighMem zone: 496 pages used for memmap
[ 0.000000] HighMem zone: 63488 pages, LIFO batch:15
[ 0.000000] PERCPU: Embedded 8 pages/cpu @e6fc0000 s9088 r8192 d15488 u32768
[ 0.000000] pcpu-alloc: s9088 r8192 d15488 u32768 alloc=8*4096
[ 0.000000] pcpu-alloc: [0] 0 [0] 1
[ 0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 256528
[ 0.000000] Kernel command line: noinitrd mem=1008M console=ttyPS0,115200 root=ubi0:rootfs ubi.mtd=1 rootfstype=ubifs rw rootwait
[ 0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)
[ 0.000000] Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
[ 0.000000] Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
[ 0.000000] Memory: 884148K/1032192K available (5032K kernel code, 283K rwdata, 1916K rodata, 204K init, 258K bss, 148044K reserved, 253952K highmem)
[ 0.000000] Virtual kernel memory layout:
[ 0.000000] vector : 0xffff0000 - 0xffff1000 ( 4 kB)
[ 0.000000] fixmap : 0xfff00000 - 0xfffe0000 ( 896 kB)
[ 0.000000] vmalloc : 0xf0000000 - 0xff000000 ( 240 MB)
[ 0.000000] lowmem : 0xc0000000 - 0xef800000 ( 760 MB)
[ 0.000000] pkmap : 0xbfe00000 - 0xc0000000 ( 2 MB)
[ 0.000000] modules : 0xbf000000 - 0xbfe00000 ( 14 MB)
[ 0.000000] .text : 0xc0008000 - 0xc06d1374 (6949 kB)
[ 0.000000] .init : 0xc06d2000 - 0xc0705380 ( 205 kB)
[ 0.000000] .data : 0xc0706000 - 0xc074cf78 ( 284 kB)
[ 0.000000] .bss : 0xc074cf84 - 0xc078d9fc ( 259 kB)
[ 0.000000] Preemptible hierarchical RCU implementation.
[ 0.000000] Dump stacks of tasks blocking RCU-preempt GP.
[ 0.000000] RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2.
[ 0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2
[ 0.000000] NR_IRQS:16 nr_irqs:16 16
[ 0.000000] ps7-slcr mapped to f0004000
[ 0.000000] zynq_clock_init: clkc starts at f0004100
[ 0.000000] Zynq clock init
[ 0.000015] sched_clock: 64 bits at 333MHz, resolution 3ns, wraps every 3298534883328ns
[ 0.000308] ps7-ttc #0 at f0006000, irq=43
[ 0.000618] Console: colour dummy device 80x30
[ 0.000658] Calibrating delay loop... 1325.46 BogoMIPS (lpj=6627328)
[ 0.040207] pid_max: default: 32768 minimum: 301
[ 0.040436] Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
[ 0.040459] Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)
[ 0.042612] CPU: Testing write buffer coherency: ok
[ 0.042974] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000
[ 0.043036] Setting up static identity map for 0x4c4b00 - 0x4c4b58
[ 0.043263] L310 cache controller enabled
[ 0.043282] l2x0: 8 ways, CACHE_ID 0x410000c8, AUX_CTRL 0x72760000, Cache size: 512 kB
[ 0.121037] CPU1: Booted secondary processor
[ 0.210227] CPU1: thread -1, cpu 1, socket 0, mpidr 80000001
[ 0.210357] Brought up 2 CPUs
[ 0.210376] SMP: Total of 2 processors activated.
[ 0.210385] CPU: All CPU(s) started in SVC mode.
[ 0.211051] devtmpfs: initialized
[ 0.213481] VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4
[ 0.214724] regulator-dummy: no parameters
[ 0.223736] NET: Registered protocol family 16
[ 0.226067] DMA: preallocated 256 KiB pool for atomic coherent allocations
[ 0.228361] cpuidle: using governor ladder
[ 0.228374] cpuidle: using governor menu
[ 0.235908] syscon f8000000.ps7-slcr: regmap [mem 0xf8000000-0xf8000fff] registered
[ 0.237440] hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
[ 0.237453] hw-breakpoint: maximum watchpoint size is 4 bytes.
[ 0.237572] zynq-ocm f800c000.ps7-ocmc: ZYNQ OCM pool: 256 KiB @ 0xf0080000
[ 0.259435] bio: create slab at 0
[ 0.261172] vgaarb: loaded
[ 0.261915] SCSI subsystem initialized
[ 0.262814] usbcore: registered new interface driver usbfs
[ 0.262985] usbcore: registered new interface driver hub
[ 0.263217] usbcore: registered new device driver usb
[ 0.263743] media: Linux media interface: v0.10
[ 0.263902] Linux video capture interface: v2.00
[ 0.264150] pps_core: LinuxPPS API ver. 1 registered
[ 0.264162] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <[[email protected]](mailto:[email protected])>
[ 0.264286] PTP clock support registered
[ 0.264656] EDAC MC: Ver: 3.0.0
[ 0.265719] Advanced Linux Sound Architecture Driver Initialized.
[ 0.268708] DMA-API: preallocated 4096 debug entries
[ 0.268724] DMA-API: debugging enabled by kernel config
[ 0.268820] Switched to clocksource arm_global_timer
[ 0.289596] NET: Registered protocol family 2
[ 0.290280] TCP established hash table entries: 8192 (order: 3, 32768 bytes)
[ 0.290375] TCP bind hash table entries: 8192 (order: 4, 65536 bytes)
[ 0.290535] TCP: Hash tables configured (established 8192 bind 8192)
[ 0.290612] TCP: reno registered
[ 0.290633] UDP hash table entries: 512 (order: 2, 16384 bytes)
[ 0.290689] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)
[ 0.290971] NET: Registered protocol family 1
[ 0.291346] RPC: Registered named UNIX socket transport module.
[ 0.291359] RPC: Registered udp transport module.
[ 0.291368] RPC: Registered tcp transport module.
[ 0.291376] RPC: Registered tcp NFSv4.1 backchannel transport module.
[ 0.291391] PCI: CLS 0 bytes, default 64
[ 0.291857] hw perfevents: enabled with ARMv7 Cortex-A9 PMU driver, 7 counters available
[ 0.293945] futex hash table entries: 512 (order: 3, 32768 bytes)
[ 0.295408] bounce pool size: 64 pages
[ 0.296323] jffs2: version 2.2. (NAND) © 2001-2006 Red Hat, Inc.
[ 0.296525] msgmni has been set to 1486
[ 0.297330] io scheduler noop registered
[ 0.297343] io scheduler deadline registered
[ 0.297385] io scheduler cfq registered (default)
[ 0.308358] dma-pl330 f8003000.ps7-dma: Loaded driver for PL330 DMAC-2364208
[ 0.308380] dma-pl330 f8003000.ps7-dma: DBUFF-128x8bytes Num_Chans-8 Num_Peri-4 Num_Events-16
[ 0.434378] e0001000.serial: ttyPS0 at MMIO 0xe0001000 (irq = 82, base_baud = 3124999) is a xuartps
[ 1.006815] console [ttyPS0] enabled
[ 1.011106] xdevcfg f8007000.ps7-dev-cfg: ioremap 0xf8007000 to f0068000
[ 1.018731] [drm] Initialized drm 1.1.0 20060810
[ 1.036029] brd: module loaded
[ 1.045494] loop: module loaded
[ 1.055163] e1000e: Intel(R) PRO/1000 Network Driver - 2.3.2-k
[ 1.060985] e1000e: Copyright(c) 1999 - 2013 Intel Corporation.
[ 1.068779] libphy: XEMACPS mii bus: probed
[ 1.073341] ------------- phy_id = 0x3625e62
[ 1.078112] xemacps e000b000.ps7-ethernet: pdev->id -1, baseaddr 0xe000b000, irq 54
[ 1.087072] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
[ 1.093912] ehci-pci: EHCI PCI platform driver
[ 1.101155] zynq-dr e0002000.ps7-usb: Unable to init USB phy, missing?
[ 1.107952] usbcore: registered new interface driver usb-storage
[ 1.114850] mousedev: PS/2 mouse device common for all mice
[ 1.120975] i2c /dev entries driver
[ 1.127946] zynq-edac f8006000.ps7-ddrc: ecc not enabled
[ 1.133474] cpufreq_cpu0: failed to get cpu0 regulator: -19
[ 1.139426] Xilinx Zynq CpuIdle Driver started
[ 1.144261] sdhci: Secure Digital Host Controller Interface driver
[ 1.150384] sdhci: Copyright(c) Pierre Ossman
[ 1.154700] sdhci-pltfm: SDHCI platform and OF driver helper
[ 1.161601] mmc0: no vqmmc regulator found
[ 1.165614] mmc0: no vmmc regulator found
[ 1.208845] mmc0: SDHCI controller on e0100000.ps7-sdio [e0100000.ps7-sdio] using ADMA
[ 1.217539] usbcore: registered new interface driver usbhid
[ 1.223054] usbhid: USB HID core driver
[ 1.227806] nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xda
[ 1.234107] nand: Micron MT29F2G08ABAEAWP
[ 1.238074] nand: 256MiB, SLC, page size: 2048, OOB size: 64
[ 1.244027] Bad block table found at page 131008, version 0x01
[ 1.250251] Bad block table found at page 130944, version 0x01
[ 1.256303] 3 ofpart partitions found on MTD device pl353-nand
[ 1.262080] Creating 3 MTD partitions on "pl353-nand":
[ 1.267174] 0x000000000000-0x000002000000 : "BOOT.bin-env-dts-kernel"
[ 1.275230] 0x000002000000-0x00000b000000 : "angstram-rootfs"
[ 1.282582] 0x00000b000000-0x000010000000 : "upgrade-rootfs"
[ 1.291630] TCP: cubic registered
[ 1.294869] NET: Registered protocol family 17
[ 1.299597] Registering SWP/SWPB emulation handler
[ 1.305497] regulator-dummy: disabling
[ 1.309875] UBI: attaching mtd1 to ubi0
[ 1.836565] UBI: scanning is finished
[ 1.848221] UBI: attached mtd1 (name "angstram-rootfs", size 144 MiB) to ubi0
[ 1.855302] UBI: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
[ 1.862063] UBI: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
[ 1.868728] UBI: VID header offset: 2048 (aligned 2048), data offset: 4096
[ 1.875605] UBI: good PEBs: 1152, bad PEBs: 0, corrupted PEBs: 0
[ 1.881586] UBI: user volume: 1, internal volumes: 1, max. volumes count: 128
[ 1.888693] UBI: max/mean erase counter: 4/1, WL threshold: 4096, image sequence number: 1134783803
[ 1.897736] UBI: available PEBs: 0, total reserved PEBs: 1152, PEBs reserved for bad PEB handling: 40
[ 1.906953] UBI: background thread "ubi_bgt0d" started, PID 1080
[ 1.906959] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
[ 1.911038] ALSA device list:
[ 1.911042] No soundcards found.
[ 1.927420] UBIFS: background thread "ubifs_bgt0_0" started, PID 1082
[ 1.956473] UBIFS: recovery needed
[ 2.016970] UBIFS: recovery completed
[ 2.020709] UBIFS: mounted UBI device 0, volume 0, name "rootfs"
[ 2.026635] UBIFS: LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[ 2.035771] UBIFS: FS size: 128626688 bytes (122 MiB, 1013 LEBs), journal size 9023488 bytes (8 MiB, 72 LEBs)
[ 2.045653] UBIFS: reserved for root: 0 bytes (0 KiB)
[ 2.050693] UBIFS: media format: w4/r0 (latest is w4/r0), UUID B079DD56-06BB-4E31-8F5E-A6604F480DB2, small LPT model
[ 2.061987] VFS: Mounted root (ubifs filesystem) on device 0:11.
[ 2.069184] devtmpfs: mounted
[ 2.072297] Freeing unused kernel memory: 204K (c06d2000 - c0705000)
[ 2.920928] random: dd urandom read with 0 bits of entropy available
[ 3.318860]
[ 3.318860] bcm54xx_config_init
[ 3.928853]
[ 3.928853] bcm54xx_config_init
[ 7.929682] xemacps e000b000.ps7-ethernet: Set clk to 124999998 Hz
[ 7.935787] xemacps e000b000.ps7-ethernet: link up (1000/FULL)
[ 22.563181] In axi fpga driver!
[ 22.566260] request_mem_region OK!
[ 22.569676] AXI fpga dev virtual address is 0xf01fe000
[ 22.574751] *base_vir_addr = 0x8c510
[ 22.590723] In fpga mem driver!
[ 22.593791] request_mem_region OK!
[ 22.597361] fpga mem virtual address is 0xf3000000
[ 23.408156]
[ 23.408156] bcm54xx_config_init
[ 24.038071]
[ 24.038071] bcm54xx_config_init
[ 28.038487] xemacps e000b000.ps7-ethernet: Set clk to 124999998 Hz
[ 28.044593] xemacps e000b000.ps7-ethernet: link up (1000/FULL)
This is XILINX board. Totalram: 1039794176
Detect 1GB control board of XILINX
DETECT HW version=0008c510
miner ID : 8118b4c610358854
Miner Type = S9
AsicType = 1387
real AsicNum = 63
use critical mode to search freq...
get PLUG ON=0x000000e0
Find hashboard on Chain[5]
Find hashboard on Chain[6]
Find hashboard on Chain[7]
set_reset_allhashboard = 0x0000ffff
Check chain[5] PIC fw version=0x03
Check chain[6] PIC fw version=0x03
Check chain[7] PIC fw version=0x03
chain[5]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[5] has freq in PIC and will jump over...
Chain[5] has core num in PIC
Chain[5] ASIC[15] has core num=5
Check chain[5] PIC fw version=0x03
chain[6]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[6] has freq in PIC and will jump over...
Chain[6] has core num in PIC
Chain[6] ASIC[17] has core num=8
Check chain[6] PIC fw version=0x03
chain[7]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[7] has freq in PIC and will jump over...
Chain[7] has core num in PIC
Chain[7] ASIC[8] has core num=13
Chain[7] ASIC[9] has core num=11
Chain[7] ASIC[13] has core num=11
Chain[7] ASIC[19] has core num=14
Chain[7] ASIC[30] has core num=6
Chain[7] ASIC[32] has core num=1
Chain[7] ASIC[42] has core num=2
Chain[7] ASIC[55] has core num=1
Chain[7] ASIC[57] has core num=2
Check chain[7] PIC fw version=0x03
get PIC voltage=108 on chain[5], value=880
get PIC voltage=74 on chain[6], value=900
get PIC voltage=108 on chain[7], value=880
set_reset_allhashboard = 0x00000000
chain[5] temp offset record: 62,0,0,0,0,0,35,28
chain[5] temp chip I2C addr=0x98
chain[5] has no middle temp, use special fix mode.
chain[6] temp offset record: 62,0,0,0,0,0,35,28
chain[6] temp chip I2C addr=0x98
chain[6] has no middle temp, use special fix mode.
chain[7] temp offset record: 62,0,0,0,0,0,35,28
chain[7] temp chip I2C addr=0x98
chain[7] has no middle temp, use special fix mode.
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
CRC error counter=0
set command mode to VIL
--- check asic number
After Get ASIC NUM CRC error counter=0
set_baud=0
The min freq=700
set real timeout 52, need sleep=379392
After TEST CRC error counter=0
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
search freq for 1 times, completed chain = 3, total chain num = 3
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
restart Miner chance num=2
waiting for receive_func to exit!
waiting for pic heart to exit!
bmminer not found= 1643 root 0:00 grep bmminer
bmminer not found, restart bmminer ...
This is user mode for mining
Detect 1GB control board of XILINX
Miner Type = S9
Miner compile time: Fri Nov 17 17:57:49 CST 2017 type: Antminer S9set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
set_reset_allhashboard = 0x0000ffff
miner ID : 8118b4c610358854
set_reset_allhashboard = 0x0000ffff
Checking fans!get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[5] speed=13440
get fan[2] speed=6120
get fan[5] speed=13440
get fan[2] speed=6120
get fan[5] speed=13440
chain[5]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J6] has backup chain_voltage=880
Chain[J6] test patten OK temp=-126
Check chain[5] PIC fw version=0x03
chain[6]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J7] has backup chain_voltage=900
Chain[J7] test patten OK temp=-120
Check chain[6] PIC fw version=0x03
chain[7]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J8] has backup chain_voltage=880
Chain[J8] test patten OK temp=-125
Check chain[7] PIC fw version=0x03
Chain[J6] orignal chain_voltage_pic=108 value=880
Chain[J7] orignal chain_voltage_pic=74 value=900
Chain[J8] orignal chain_voltage_pic=108 value=880
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
Chain[J6] has 63 asic
Chain[J7] has 63 asic
Chain[J8] has 63 asic
Chain[J6] has core num in PIC
Chain[J6] ASIC[15] has core num=5
Chain[J7] has core num in PIC
Chain[J7] ASIC[17] has core num=8
Chain[J8] has core num in PIC
Chain[J8] ASIC[8] has core num=13
Chain[J8] ASIC[9] has core num=11
Chain[J8] ASIC[13] has core num=11
Chain[J8] ASIC[19] has core num=14
Chain[J8] ASIC[30] has core num=6
Chain[J8] ASIC[32] has core num=1
Chain[J8] ASIC[42] has core num=2
Chain[J8] ASIC[55] has core num=1
Chain[J8] ASIC[57] has core num=2
miner total rate=13999GH/s fixed rate=13500GH/s
read PIC voltage=940 on chain[5]
Chain:5 chipnum=63
Chain[J6] voltage added=0.2V
Chain:5 temp offset=0
Chain:5 base freq=487
Asic[ 0]:618
Asic[ 1]:631 Asic[ 2]:681 Asic[ 3]:618 Asic[ 4]:631 Asic[ 5]:681 Asic[ 6]:618 Asic[ 7]:631 Asic[ 8]:675
Asic[ 9]:618 Asic[10]:631 Asic[11]:681 Asic[12]:631 Asic[13]:637 Asic[14]:606 Asic[15]:487 Asic[16]:637
Asic[17]:675 Asic[18]:618 Asic[19]:637 Asic[20]:675 Asic[21]:631 Asic[22]:650 Asic[23]:687 Asic[24]:631
Asic[25]:537 Asic[26]:687 Asic[27]:631 Asic[28]:587 Asic[29]:687 Asic[30]:612 Asic[31]:650 Asic[32]:687
Asic[33]:631 Asic[34]:650 Asic[35]:687 Asic[36]:631 Asic[37]:662 Asic[38]:693 Asic[39]:631 Asic[40]:662
Asic[41]:662 Asic[42]:543 Asic[43]:668 Asic[44]:693 Asic[45]:568 Asic[46]:675 Asic[47]:700 Asic[48]:631
Asic[49]:568 Asic[50]:700 Asic[51]:631 Asic[52]:625 Asic[53]:700 Asic[54]:631 Asic[55]:675 Asic[56]:662
Asic[57]:631 Asic[58]:662 Asic[59]:687 Asic[60]:631 Asic[61]:681 Asic[62]:700
Chain:5 max freq=700
Chain:5 min freq=487
read PIC voltage=940 on chain[6]
Chain:6 chipnum=63
Chain[J7] voltage added=0.1V
Chain:6 temp offset=0
Chain:6 base freq=687
Asic[ 0]:650
Asic[ 1]:650 Asic[ 2]:650 Asic[ 3]:650 Asic[ 4]:650 Asic[ 5]:650 Asic[ 6]:650 Asic[ 7]:650 Asic[ 8]:650
Asic[ 9]:650 Asic[10]:650 Asic[11]:650 Asic[12]:650 Asic[13]:650 Asic[14]:650 Asic[15]:650 Asic[16]:650
Asic[17]:650 Asic[18]:650 Asic[19]:650 Asic[20]:650 Asic[21]:650 Asic[22]:650 Asic[23]:650 Asic[24]:650
Asic[25]:650 Asic[26]:656 Asic[27]:656 Asic[28]:656 Asic[29]:656 Asic[30]:656 Asic[31]:656 Asic[32]:656
Asic[33]:656 Asic[34]:656 Asic[35]:656 Asic[36]:656 Asic[37]:656 Asic[38]:656 Asic[39]:656 Asic[40]:656
Asic[41]:656 Asic[42]:656 Asic[43]:656 Asic[44]:656 Asic[45]:656 Asic[46]:656 Asic[47]:656 Asic[48]:656
Asic[49]:656 Asic[50]:656 Asic[51]:656 Asic[52]:656 Asic[53]:656 Asic[54]:656 Asic[55]:656 Asic[56]:656
Asic[57]:656 Asic[58]:656 Asic[59]:656 Asic[60]:656 Asic[61]:656 Asic[62]:656
Chain:6 max freq=656
Chain:6 min freq=650
read PIC voltage=940 on chain[7]
Chain:7 chipnum=63
Chain[J8] voltage added=0.2V
Chain:7 temp offset=0
Chain:7 base freq=637
Asic[ 0]:656
Asic[ 1]:656 Asic[ 2]:656 Asic[ 3]:656 Asic[ 4]:656 Asic[ 5]:656 Asic[ 6]:656 Asic[ 7]:656 Asic[ 8]:637
Asic[ 9]:637 Asic[10]:656 Asic[11]:656 Asic[12]:656 Asic[13]:637 Asic[14]:656 Asic[15]:662 Asic[16]:662
Asic[17]:662 Asic[18]:662 Asic[19]:637 Asic[20]:662 Asic[21]:662 Asic[22]:662 Asic[23]:662 Asic[24]:662
Asic[25]:662 Asic[26]:662 Asic[27]:662 Asic[28]:662 Asic[29]:662 Asic[30]:637 Asic[31]:662 Asic[32]:662
Asic[33]:662 Asic[34]:662 Asic[35]:662 Asic[36]:662 Asic[37]:662 Asic[38]:662 Asic[39]:662 Asic[40]:662
Asic[41]:662 Asic[42]:650 Asic[43]:662 Asic[44]:662 Asic[45]:662 Asic[46]:662 Asic[47]:662 Asic[48]:662
Asic[49]:662 Asic[50]:662 Asic[51]:662 Asic[52]:662 Asic[53]:662 Asic[54]:662 Asic[55]:650 Asic[56]:662
Asic[57]:650 Asic[58]:662 Asic[59]:662 Asic[60]:662 Asic[61]:662 Asic[62]:662
Chain:7 max freq=662
Chain:7 min freq=637
Miner fix freq ...
read PIC voltage=940 on chain[5]
Chain:5 chipnum=63
Chain[J6] voltage added=0.2V
Chain:5 temp offset=0
Chain:5 base freq=487
Asic[ 0]:618
Asic[ 1]:631 Asic[ 2]:650 Asic[ 3]:618 Asic[ 4]:631 Asic[ 5]:656 Asic[ 6]:618 Asic[ 7]:631 Asic[ 8]:656
Asic[ 9]:618 Asic[10]:631 Asic[11]:656 Asic[12]:631 Asic[13]:637 Asic[14]:606 Asic[15]:487 Asic[16]:637
Asic[17]:656 Asic[18]:618 Asic[19]:637 Asic[20]:656 Asic[21]:631 Asic[22]:650 Asic[23]:656 Asic[24]:631
Asic[25]:537 Asic[26]:656 Asic[27]:631 Asic[28]:587 Asic[29]:656 Asic[30]:612 Asic[31]:650 Asic[32]:656
Asic[33]:631 Asic[34]:650 Asic[35]:656 Asic[36]:631 Asic[37]:656 Asic[38]:656 Asic[39]:631 Asic[40]:656
Asic[41]:656 Asic[42]:543 Asic[43]:656 Asic[44]:656 Asic[45]:568 Asic[46]:656 Asic[47]:656 Asic[48]:631
Asic[49]:568 Asic[50]:656 Asic[51]:631 Asic[52]:625 Asic[53]:656 Asic[54]:631 Asic[55]:656 Asic[56]:656
Asic[57]:631 Asic[58]:656 Asic[59]:656 Asic[60]:631 Asic[61]:656 Asic[62]:656
Chain:5 max freq=656
Chain:5 min freq=487
read PIC voltage=940 on chain[6]
Chain:6 chipnum=63
Chain[J7] voltage added=0.1V
Chain:6 temp offset=0
Chain:6 base freq=687
Asic[ 0]:631
Asic[ 1]:631 Asic[ 2]:631 Asic[ 3]:631 Asic[ 4]:631 Asic[ 5]:631 Asic[ 6]:631 Asic[ 7]:631 Asic[ 8]:631
Asic[ 9]:631 Asic[10]:631 Asic[11]:631 Asic[12]:631 Asic[13]:631 Asic[14]:631 Asic[15]:631 Asic[16]:631
Asic[17]:631 Asic[18]:631 Asic[19]:631 Asic[20]:631 Asic[21]:631 Asic[22]:631 Asic[23]:631 Asic[24]:631
Asic[25]:631 Asic[26]:631 Asic[27]:631 Asic[28]:631 Asic[29]:631 Asic[30]:631 Asic[31]:631 Asic[32]:631
Asic[33]:631 Asic[34]:631 Asic[35]:637 Asic[36]:637 Asic[37]:637 Asic[38]:637 Asic[39]:637 Asic[40]:637
Asic[41]:637 Asic[42]:637 Asic[43]:637 Asic[44]:637 Asic[45]:637 Asic[46]:637 Asic[47]:637 Asic[48]:637
Asic[49]:637 Asic[50]:637 Asic[51]:637 Asic[52]:637 Asic[53]:637 Asic[54]:637 Asic[55]:637 Asic[56]:637
Asic[57]:637 Asic[58]:637 Asic[59]:637 Asic[60]:637 Asic[61]:637 Asic[62]:637
Chain:6 max freq=637
Chain:6 min freq=631
read PIC voltage=940 on chain[7]
Chain:7 chipnum=63
Chain[J8] voltage added=0.2V
Chain:7 temp offset=0
Chain:7 base freq=637
Asic[ 0]:637
Asic[ 1]:637 Asic[ 2]:637 Asic[ 3]:637 Asic[ 4]:637 Asic[ 5]:637 Asic[ 6]:637 Asic[ 7]:637 Asic[ 8]:637
Asic[ 9]:637 Asic[10]:637 Asic[11]:637 Asic[12]:637 Asic[13]:637 Asic[14]:637 Asic[15]:637 Asic[16]:637
Asic[17]:637 Asic[18]:637 Asic[19]:637 Asic[20]:637 Asic[21]:637 Asic[22]:637 Asic[23]:637 Asic[24]:637
Asic[25]:637 Asic[26]:637 Asic[27]:637 Asic[28]:637 Asic[29]:637 Asic[30]:637 Asic[31]:637 Asic[32]:637
Asic[33]:637 Asic[34]:637 Asic[35]:637 Asic[36]:637 Asic[37]:637 Asic[38]:637 Asic[39]:637 Asic[40]:637
Asic[41]:637 Asic[42]:637 Asic[43]:637 Asic[44]:637 Asic[45]:637 Asic[46]:637 Asic[47]:637 Asic[48]:637
Asic[49]:643 Asic[50]:643 Asic[51]:643 Asic[52]:643 Asic[53]:643 Asic[54]:643 Asic[55]:643 Asic[56]:643
Asic[57]:643 Asic[58]:643 Asic[59]:643 Asic[60]:643 Asic[61]:643 Asic[62]:643
Chain:7 max freq=643
Chain:7 min freq=637
max freq = 656
set baud=1
Chain[J6] PIC temp offset=62,0,0,0,0,0,35,28
chain[5] temp chip I2C addr=0x98
chain[5] has no middle temp, use special fix mode.
Chain[J6] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[5] chip[244] local:26 remote:27 offset:29
Chain[J6] chip[244] get middle temp offset=29 typeID=55
Chain[J7] PIC temp offset=62,0,0,0,0,0,35,28
chain[6] temp chip I2C addr=0x98
chain[6] has no middle temp, use special fix mode.
Chain[J7] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[6] chip[244] local:26 remote:27 offset:29
Chain[J7] chip[244] get middle temp offset=29 typeID=55
Chain[J8] PIC temp offset=62,0,0,0,0,0,35,28
chain[7] temp chip I2C addr=0x98
chain[7] has no middle temp, use special fix mode.
Chain[J8] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[7] chip[244] local:26 remote:28 offset:28
Chain[J8] chip[244] get middle temp offset=28 typeID=55
miner rate=13501 voltage limit=900 on chain[5]
get PIC voltage=880 on chain[5], check: must be < 900
miner rate=13501 voltage limit=900 on chain[6]
get PIC voltage=900 on chain[6], check: must be < 900
miner rate=13501 voltage limit=900 on chain[7]
get PIC voltage=880 on chain[7], check: must be < 900
Chain[J6] set working voltage=880 [108]
Chain[J7] set working voltage=900 [74]
Chain[J8] set working voltage=880 [108]
do heat board 8xPatten for 1 times
start send works on chain[5]
start send works on chain[6]
start send works on chain[7]
get send work num :57456 on Chain[5]
get send work num :57456 on Chain[6]
get send work num :57456 on Chain[7]
wait recv nonce on chain[5]
wait recv nonce on chain[6]
wait recv nonce on chain[7]
get nonces on chain[5]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=912 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=912 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=912
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
freq[00]=618 freq[01]=631 freq[02]=650 freq[03]=618 freq[04]=631 freq[05]=656 freq[06]=618 freq[07]=631
freq[08]=656 freq[09]=618 freq[10]=631 freq[11]=656 freq[12]=631 freq[13]=637 freq[14]=606 freq[15]=487
freq[16]=637 freq[17]=656 freq[18]=618 freq[19]=637 freq[20]=656 freq[21]=631 freq[22]=650 freq[23]=656
freq[24]=631 freq[25]=537 freq[26]=656 freq[27]=631 freq[28]=587 freq[29]=656 freq[30]=612 freq[31]=650
freq[32]=656 freq[33]=631 freq[34]=650 freq[35]=656 freq[36]=631 freq[37]=656 freq[38]=656 freq[39]=631
freq[40]=656 freq[41]=656 freq[42]=543 freq[43]=656 freq[44]=656 freq[45]=568 freq[46]=656 freq[47]=656
freq[48]=631 freq[49]=568 freq[50]=656 freq[51]=631 freq[52]=625 freq[53]=656 freq[54]=631 freq[55]=656
freq[56]=656 freq[57]=631 freq[58]=656 freq[59]=656 freq[60]=631 freq[61]=656 freq[62]=656
total valid nonce number:57456
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:25912
last_nonce_num:14370
get nonces on chain[6]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=912 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=912 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=912
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
freq[00]=631 freq[01]=631 freq[02]=631 freq[03]=631 freq[04]=631 freq[05]=631 freq[06]=631 freq[07]=631
freq[08]=631 freq[09]=631 freq[10]=631 freq[11]=631 freq[12]=631 freq[13]=631 freq[14]=631 freq[15]=631
freq[16]=631 freq[17]=631 freq[18]=631 freq[19]=631 freq[20]=631 freq[21]=631 freq[22]=631 freq[23]=631
freq[24]=631 freq[25]=631 freq[26]=631 freq[27]=631 freq[28]=631 freq[29]=631 freq[30]=631 freq[31]=631
freq[32]=631 freq[33]=631 freq[34]=631 freq[35]=637 freq[36]=637 freq[37]=637 freq[38]=637 freq[39]=637
freq[40]=637 freq[41]=637 freq[42]=637 freq[43]=637 freq[44]=637 freq[45]=637 freq[46]=637 freq[47]=637
freq[48]=637 freq[49]=637 freq[50]=637 freq[51]=637 freq[52]=637 freq[53]=637 freq[54]=637 freq[55]=637
freq[56]=637 freq[57]=637 freq[58]=637 freq[59]=637 freq[60]=637 freq[61]=637 freq[62]=637
total valid nonce number:57456
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:25987
last_nonce_num:14368
get nonces on chain[7]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=907 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=909 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=911
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
asic[08]=907
core[049]=7 core[053]=5 core[056]=7
asic[19]=909
core[064]=7 core[112]=6
asic[55]=911
core[007]=7
freq[00]=637 freq[01]=637 freq[02]=637 freq[03]=637 freq[04]=637 freq[05]=637 freq[06]=637 freq[07]=637
freq[08]=637 freq[09]=637 freq[10]=637 freq[11]=637 freq[12]=637 freq[13]=637 freq[14]=637 freq[15]=637
freq[16]=637 freq[17]=637 freq[18]=637 freq[19]=637 freq[20]=637 freq[21]=637 freq[22]=637 freq[23]=637
freq[24]=637 freq[25]=637 freq[26]=637 freq[27]=637 freq[28]=637 freq[29]=637 freq[30]=637 freq[31]=637
freq[32]=637 freq[33]=637 freq[34]=637 freq[35]=637 freq[36]=637 freq[37]=637 freq[38]=637 freq[39]=637
freq[40]=637 freq[41]=637 freq[42]=637 freq[43]=637 freq[44]=637 freq[45]=637 freq[46]=637 freq[47]=637
freq[48]=637 freq[49]=643 freq[50]=643 freq[51]=643 freq[52]=643 freq[53]=643 freq[54]=643 freq[55]=643
freq[56]=643 freq[57]=643 freq[58]=643 freq[59]=643 freq[60]=643 freq[61]=643 freq[62]=643
total valid nonce number:57447
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:26183
last_nonce_num:35748
chain[5]: All chip cores are opened OK!
Test Patten on chain[5]: OK!
chain[6]: All chip cores are opened OK!
Test Patten on chain[6]: OK!
chain[7]: All chip cores are opened OK!
Test Patten on chain[7]: OK!
setStartTimePoint total_tv_start_sys=217 total_tv_end_sys=218
restartNum = 2 , auto-reinit enabled...
do read_temp_func once...
do check_asic_reg 0x08
get RT hashrate from Chain[5]: (asic index start from 1-63)
Asic[01]=72.5110 Asic[02]=68.6020 Asic[03]=74.4230 Asic[04]=74.6750 Asic[05]=71.4540 Asic[06]=77.5610 Asic[07]=74.7760 Asic[08]=74.3900
Asic[09]=77.7790 Asic[10]=76.7220 Asic[11]=73.8020 Asic[12]=68.5850 Asic[13]=76.1680 Asic[14]=72.4770 Asic[15]=73.0470 Asic[16]=57.8810
Asic[17]=74.4740 Asic[18]=76.4530 Asic[19]=67.8800 Asic[20]=70.1280 Asic[21]=73.7520 Asic[22]=74.6580 Asic[23]=73.6850 Asic[24]=78.5170
Asic[25]=73.6850 Asic[26]=63.6860 Asic[27]=80.9660 Asic[28]=73.9200 Asic[29]=68.9870 Asic[30]=75.6310 Asic[31]=74.9770 Asic[32]=69.4570
Asic[33]=74.6580 Asic[34]=79.8930 Asic[35]=76.6710 Asic[36]=74.3730 Asic[37]=66.6050 Asic[38]=76.7380 Asic[39]=71.4540 Asic[40]=69.3060
Asic[41]=72.5610 Asic[42]=73.8530 Asic[43]=58.9210 Asic[44]=75.3800 Asic[45]=73.1310 Asic[46]=68.4000 Asic[47]=77.6780 Asic[48]=73.1150
Asic[49]=69.2890 Asic[50]=62.8130 Asic[51]=74.2720 Asic[52]=73.1480 Asic[53]=67.4440 Asic[54]=72.4940 Asic[55]=68.1990 Asic[56]=72.4100
Asic[57]=75.3460 Asic[58]=66.1350 Asic[59]=72.9800 Asic[60]=78.1480 Asic[61]=72.3260 Asic[62]=72.5610 Asic[63]=77.7950
get RT hashrate from Chain[6]: (asic index start from 1-63)
Asic[01]=67.6620 Asic[02]=75.9840 Asic[03]=70.3300 Asic[04]=75.5640 Asic[05]=62.8470 Asic[06]=70.2790 Asic[07]=74.5240 Asic[08]=72.9130
Asic[09]=70.6320 Asic[10]=72.5610 Asic[11]=73.9370 Asic[12]=77.3420 Asic[13]=72.4440 Asic[14]=68.8030 Asic[15]=73.0810 Asic[16]=73.8360
Asic[17]=73.5510 Asic[18]=73.9700 Asic[19]=71.0340 Asic[20]=71.1680 Asic[21]=72.1580 Asic[22]=78.8190 Asic[23]=71.9230 Asic[24]=69.4570
Asic[25]=67.7630 Asic[26]=71.7220 Asic[27]=76.4030 Asic[28]=71.1180 Asic[29]=68.7360 Asic[30]=69.7090 Asic[31]=77.5610 Asic[32]=70.1790
Asic[33]=67.9140 Asic[34]=72.3930 Asic[35]=64.5920 Asic[36]=72.1920 Asic[37]=74.6080 Asic[38]=75.4470 Asic[39]=73.8700 Asic[40]=73.9370
Asic[41]=66.2860 Asic[42]=79.4230 Asic[43]=75.8160 Asic[44]=68.6350 Asic[45]=74.7920 Asic[46]=70.7990 Asic[47]=71.2360 Asic[48]=73.8700
Asic[49]=66.5380 Asic[50]=70.6150 Asic[51]=72.6280 Asic[52]=75.7490 Asic[53]=71.8400 Asic[54]=76.5370 Asic[55]=73.5340 Asic[56]=69.2390
Asic[57]=75.1280 Asic[58]=74.3230 Asic[59]=73.4330 Asic[60]=72.3430 Asic[61]=77.6780 Asic[62]=82.4600 Asic[63]=69.5240
get RT hashrate from Chain[7]: (asic index start from 1-63)
Asic[01]=73.5510 Asic[02]=75.9160 Asic[03]=80.1110 Asic[04]=76.9900 Asic[05]=76.1510 Asic[06]=73.5170 Asic[07]=74.9940 Asic[08]=73.1150
Asic[09]=70.6650 Asic[10]=70.6990 Asic[11]=72.4770 Asic[12]=70.1450 Asic[13]=74.3060 Asic[14]=71.8060 Asic[15]=74.7420 Asic[16]=75.6650
Asic[17]=76.8220 Asic[18]=69.5240 Asic[19]=72.0910 Asic[20]=75.2620 Asic[21]=72.0240 Asic[22]=73.2660 Asic[23]=76.2690 Asic[24]=69.9440
Asic[25]=67.7290 Asic[26]=71.7050 Asic[27]=74.6250 Asic[28]=78.2320 Asic[29]=69.8430 Asic[30]=68.4670 Asic[31]=71.5210 Asic[32]=68.9540
Asic[33]=74.6250 Asic[34]=71.8730 Asic[35]=74.4400 Asic[36]=74.8760 Asic[37]=73.9030 Asic[38]=72.9300 Asic[39]=69.6250 Asic[40]=74.9430
Asic[41]=72.7620 Asic[42]=69.4910 Asic[43]=67.4270 Asic[44]=71.4870 Asic[45]=74.4570 Asic[46]=66.6550 Asic[47]=67.5450 Asic[48]=75.4800
Asic[49]=72.2590 Asic[50]=72.9300 Asic[51]=75.6820 Asic[52]=71.9070 Asic[53]=67.9640 Asic[54]=67.8470 Asic[55]=74.3900 Asic[56]=71.0010
Asic[57]=75.8490 Asic[58]=74.9270 Asic[59]=72.3930 Asic[60]=74.3730 Asic[61]=75.5310 Asic[62]=73.8190 Asic[63]=72.4440
Check Chain[J6] ASIC RT error: (asic index start from 1-63)
Check Chain[J7] ASIC RT error: (asic index start from 1-63)
Check Chain[J8] ASIC RT error: (asic index start from 1-63)
Done check_asic_reg
do read temp on Chain[5]
Chain[5] Chip[62] TempTypeID=55 middle offset=29
Chain[5] Chip[62] local Temp=60
Chain[5] Chip[62] middle Temp=70
Special fix Chain[5] Chip[62] middle Temp = 75
Done read temp on Chain[5]
do read temp on Chain[6]
Chain[6] Chip[62] TempTypeID=55 middle offset=29
Chain[6] Chip[62] local Temp=60
Chain[6] Chip[62] middle Temp=72
Special fix Chain[6] Chip[62] middle Temp = 75
Done read temp on Chain[6]
do read temp on Chain[7]
Chain[7] Chip[62] TempTypeID=55 middle offset=28
Chain[7] Chip[62] local Temp=62
Chain[7] Chip[62] middle Temp=72
Special fix Chain[7] Chip[62] middle Temp = 77
Done read temp on Chain[7]
set FAN speed according to: temp_highest=62 temp_top1[PWM_T]=62 temp_top1[TEMP_POS_LOCAL]=62 temp_change=0 fix_fan_steps=0
FAN PWM: 74
read_temp_func Done!
CRC error counter=0
submitted by Timsierramist to BITMAIN [link] [comments]

Bitcoin mining in Thailand - mining Cryptocurrency - building a mining rig Mining Bitcoin ! HASH FLARE ! FIRST DEPOSIT ! How to make money How To Mine 1 Bitcoin in 10 Minutes - Blockchain BTC Miner ... Bitcoin-Mine: Hier werden Millionen verdient  Galileo ... How to Find and Remove a Hidden Miner Virus on Your PC 🐛🛡️🖥️

BFGMiner is a bitcoin mining tool for Windows and Linux. It is very similar to CGMiner and has identical features. With that said, it has some special additions that veteran Bitcoin miners will love. This mining tool is one of the most popular, and well known Bitcoin mining tools around, and is not meant for the average user by any means. An up to date list of the best Bitcoin mining software for Linux. Easy to install and manage, with a graphical user interface. Mining bitcoins – a process that helps manage bitcoin transactions as well as create new “wealth” – is the new Beanie Babies. Luckily for us, however, bitcoins seem to be going up in value ... Nonetheless, Bitcoin mining is a record-keeping service that is carried out via computer processing power. The transactions are documented in the Blockchain that works as a public ledger. The Blockchain’s completeness and consistency are regulated in a state that is unalterable by the miners, and it is continuously verified as it takes on new broadcast transactions. It is known as a block ... Bitcoin mining rigs and systems have come a long way since the beginning. The first Bitcoin miners made do with the tools they had at their disposal and set up various software to control the mining hardware in their rigs. While these make-shift solutions were better than nothing, they didn’t exactly work efficiently. Not only did that slow down the mining process, but it also made it ...

[index] [21655] [22536] [38775] [38792] [8856] [25456] [20985] [35646] [13877] [27601]

Bitcoin mining in Thailand - mining Cryptocurrency - building a mining rig

What it really takes to mine a Bitcoin in 10 Minutes. Firstly I'll show you a special free method to mine Bitcoin and send funds directly to your wallet in 1... Zu Besuch in der Bitcoin-Mine: Hier fließt die virtuelle Währung in Millionenhöhe. Mehr Galileo: http://www.galileo.tv/ Galileo auf YouTube abonnieren: htt... Asalam walaikum guys! Old But Legit Best Bitcoin Mining Site 2020 Investment site + Proof Urdu Hindi Today in this video I tell you the old & best bitcoin Mining Site #Unix 100% legit site ... Do you want to get free bitcoin without doing anything then watch this video till the end. This video is about how I hacked cloud server bitcoin mining app and got 0.8 bitcoin a day for free and ... BITCOIN MINING in Deutschland Profitabel?💰Rechnung und Erklärung - Duration: 15:15. Chris Rzepka 87,372 views. 15:15. 5 MONATE FAZIT Genesis Mining Bitcoin Mining #62 ...

#